Your browser doesn't support javascript.
loading
TGF-ß/Smad signaling pathway plays a crucial role in patulin-induced pro-fibrotic changes in rat kidney via modulation of slug and snail expression.
Pal, Saurabh; Singh, Neha; Dev, Indra; Sharma, Vineeta; Jagdale, Pankaj Ramji; Ayanur, Anjaneya; Ansari, Kausar Mahmood.
Afiliación
  • Pal S; Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow
  • Singh N; Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow
  • Dev I; Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow
  • Sharma V; Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
  • Jagdale PR; Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 M. G. Marg, Lucknow 226001, Uttar Pradesh, India.
  • Ayanur A; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 M. G. Marg, Lucknow 226001, Uttar Pradesh, India.
  • Ansari KM; Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow
Toxicol Appl Pharmacol ; 434: 115819, 2022 01 01.
Article en En | MEDLINE | ID: mdl-34896196
ABSTRACT
Patulin (PAT) is a mycotoxin that contaminates a variety of food and foodstuffs. Earlier in vitro and in vivo findings have indicated that kidney is one of the target organs for PAT-induced toxicity. However, no study has evaluated the chronic effects of PAT exposure at environmentally relevant doses or elucidated the detailed mechanism(s) involved. Here, using in vitro and in vivo experimental approaches, we delineated the mechanism/s involved in pro-fibrotic changes in the kidney after low-dose chronic exposure to PAT. We found that non-toxic concentrations (50 nM and 100 nM) of PAT to normal rat kidney cells (NRK52E) caused a higher generation of reactive oxygen species (ROS) (mainly hydroxyl (•OH), peroxynitrite (ONOO-), and hypochlorite radical (ClO-). PAT exposure caused the activation of mitogen-activated protein kinases (MAPKs) and its downstream c-Jun/Fos signaling pathways. Moreover, our chromatin immunoprecipitation (ChIP) analysis suggested that c-Jun/Fos binds to the promoter region of Transforming growth factor beta (TGF-ß1) and possibly induces its expression. Results showed that PAT-induced TGF-ß1 further activates the TGF-ß1/smad signaling pathways. Higher activation of slug and snail transcription factors further modulates the regulation of pro-fibrotic molecules. Similarly, in vivo results showed that PAT exposure to rats through gavage at 25 and 100 µg/kg b. wt had higher levels of kidney injury/toxicity markers namely vascular endothelial growth factor (VEGF), kidney Injury Molecule-1 (Kim-1), tissue inhibitor of metalloproteinase-1 (Timp-1), and clusterin (CLU). Additionally, histopathological analysis indicated significant alterations in renal tubules and glomeruli along with collagen deposition in PAT-treated rat kidneys. Overall, our data provide evidence of the involvement of ROS mediated MAPKs and TGF-ß1/smad pathways in PAT-induced pro-fibrotic changes in the kidney via modulation of slug and snail expression.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Patulina / Transducción de Señal / Factor de Crecimiento Transformador beta / Proteínas Smad / Factores de Transcripción de la Familia Snail / Enfermedades Renales Límite: Animals Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Patulina / Transducción de Señal / Factor de Crecimiento Transformador beta / Proteínas Smad / Factores de Transcripción de la Familia Snail / Enfermedades Renales Límite: Animals Idioma: En Año: 2022 Tipo del documento: Article