Your browser doesn't support javascript.
loading
Inactivation and subsequent reactivation of Aspergillus species by the combination of UV and monochloramine: Comparisons with UV/chlorine.
Wu, Gehui; Zhao, Hui; Wan, Qiqi; Xu, Xiangqian; Cao, Ruihua; Li, Kai; Wang, Jingyi; Huang, Tinglin; Lu, Jinsuo; Wen, Gang.
Afiliación
  • Wu G; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Bui
  • Zhao H; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
  • Wan Q; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
  • Xu X; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
  • Cao R; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
  • Li K; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
  • Wang J; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
  • Huang T; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
  • Lu J; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Bui
  • Wen G; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Bui
J Environ Sci (China) ; 117: 105-118, 2022 Jul.
Article en En | MEDLINE | ID: mdl-35725063
ABSTRACT
Ultraviolet (UV)/monochloramine (NH2Cl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to i) clarify the inactivation and photoreactivation characteristics of UV/NH2Cl process, ii) compared with UV/Cl2 in inactivation efficiency, photoreactivation and energy consumption. The results illustrated that UV/NH2Cl showed better inactivation efficiency than that of UV alone and UV/Cl2, and could effectively control the photoreactivation. For instance, the inactivation rates for Aspergillus flavus, Aspergillus niger and Aspergillus fumigatus in the processes of UV/NH2Cl (2.0 mg/L) was 0.034, 0.030 and 0.061 cm2/mJ, respectively, which were higher than that of UV alone (0.027, 0.026 and 0.024 cm2/mJ) and UV/Cl2 (0.023, 0.026 and 0.031 cm2/mJ). However, there was no synergistic effect for Aspergillus flavus and Aspergillus fumigatus. As for Aspergillus niger, the best synergistic effect can reach 1.86-log10. This may be due to their different resistance to disinfectants, which were related to the size, an outer layer of rodlets (hydrophobins) and pigments. After UV/NH2Cl inactivation, the degree of cell membrane damage and intracellular reactive oxygen species were higher than that of UV alone. UV/NH2Cl had the advantages of high inactivation efficiency and inhibition of photoreactivation, which provides a new entry point for the disinfection of waterborne fungi.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cloro / Purificación del Agua Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cloro / Purificación del Agua Idioma: En Año: 2022 Tipo del documento: Article