Your browser doesn't support javascript.
loading
Giant Orbital Anisotropy with Strong Spin-Orbit Coupling Established at the Pseudomorphic Interface of the Co/Pd Superlattice.
Kim, Sanghoon; Pathak, Sachin; Rhim, Sonny H; Cha, Jongin; Jekal, Soyoung; Hong, Soon Cheol; Lee, Hyun Hwi; Park, Sung-Hun; Lee, Han-Koo; Park, Jae-Hoon; Lee, Soogil; Steinrück, Hans-Georg; Mehta, Apurva; Wang, Shan X; Hong, Jongill.
Afiliación
  • Kim S; Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea.
  • Pathak S; Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea.
  • Rhim SH; Department of Physics, University of Ulsan, Ulsan, 44610, Korea.
  • Cha J; Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea.
  • Jekal S; Department of Physics, University of Ulsan, Ulsan, 44610, Korea.
  • Hong SC; Department of Physics, University of Ulsan, Ulsan, 44610, Korea.
  • Lee HH; Pohang Acceleration Laboratory, Pohang, 37673, Korea.
  • Park SH; Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea.
  • Lee HK; Pohang Acceleration Laboratory, Pohang, 37673, Korea.
  • Park JH; Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea.
  • Lee S; Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea.
  • Steinrück HG; Department of Chemistry, Paderborn University, Paderborn, 33098, Germany.
  • Mehta A; SSRL Materials Science Division, SLAC National Accelerator Laboratory, CA, 94025, USA.
  • Wang SX; Department of Materials Science and Engineering, and Electrical Engineering, Stanford University, CA, 94305, USA.
  • Hong J; Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea.
Adv Sci (Weinh) ; 9(24): e2201749, 2022 Aug.
Article en En | MEDLINE | ID: mdl-35748161
ABSTRACT
Orbital anisotropy at interfaces in magnetic heterostructures has been key to pioneering spin-orbit-related phenomena. However, modulating the interface's electronic structure to make it abnormally asymmetric has been challenging because of lack of appropriate methods. Here, the authors report that low-energy proton irradiation achieves a strong level of inversion asymmetry and unusual strain at interfaces in [Co/Pd] superlattices through nondestructive, selective removal of oxygen from Co3 O4 /Pd superlattices during irradiation. Structural investigations corroborate that progressive reduction of Co3 O4 into Co establishes pseudomorphic growth with sharp interfaces and atypically large tensile stress. The normal component of orbital to spin magnetic moment at the interface is the largest among those observed in layered Co systems, which is associated with giant orbital anisotropy theoretically confirmed, and resulting very large interfacial magnetic anisotropy is observed. All results attribute not only to giant orbital anisotropy but to enhanced interfacial spin-orbit coupling owing to the pseudomorphic nature at the interface. They are strongly supported by the observation of reversal of polarity of temperature-dependent Anomalous Hall signal, a signature of Berry phase. This work suggests that establishing both giant orbital anisotropy and strong spin-orbit coupling at the interface is key to exploring spintronic devices with new functionalities.
Palabras clave