Your browser doesn't support javascript.
loading
Yolk-shell Co3 O4 @Fe3 O4 /C Nanocomposites as a Heterogeneous Fenton-like Catalyst for Organic Dye Removal.
Yang, Ruixia; Peng, Qiaohong; Ahmed, Adeel; Gao, Fengyuan; Yu, Bing; Shen, Youqing; Cong, Hailin.
Afiliación
  • Yang R; College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
  • Peng Q; College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
  • Ahmed A; College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
  • Gao F; College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
  • Yu B; College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
  • Shen Y; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, P. R. China.
  • Cong H; College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Chemistry ; 29(13): e202203097, 2023 Mar 01.
Article en En | MEDLINE | ID: mdl-36453090
ABSTRACT
The yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites with Co3 O4 as the core, Fe3 O4 /C as the shell, and a cavity structure were synthesized by the hard template method. The physical and chemical properties of the composites were characterized by SEM, TEM, XRD, TGA, XPS, BET, and VSM. The specific surface area of yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites is 175.9 m2  g-1 , showing superparamagnetic properties. The yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites were used as heterogeneous Fenton catalysts to activate peroxymonosulfate (PMS) to degrade MB, which showed high catalytic degradation performance. The degradation rate of MB reached 100 % within 30 min under the circumstances of the yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites dosage of 0.1 g L-1 , the PMS dosage of 1.0 g L-1 , the initial MB concentration of 100 mg L-1 , an initial pH of 5.5, and a temperature of 30±2 °C. The enhanced catalytic performance of the yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites can be attributed to the synergistic effect of the two catalytically active materials and the middle cavity. The effects of different operating parameters and co-existing anion species on MB degradation were also investigated. Electron paramagnetic resonance (EPR) analysis and quenching experiments confirmed that the formation of SO4 ⋅- in the yolk-shell Co3 O4 @Fe3 O4 /C/PMS system contributes to MB degradation. In addition, yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites can be easily separated from the pollutant solution under the action of an external magnetic field, and the degradation rate of MB can still reach 98 % after five cycles, indicating that it has good stability and reusability and has broad application prospects in the field of water purification.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article