Your browser doesn't support javascript.
loading
Distinguishing normal, neuropathic and myopathic EMG with an automated machine learning approach.
Tannemaat, M R; Kefalas, M; Geraedts, V J; Remijn-Nelissen, L; Verschuuren, A J M; Koch, M; Kononova, A V; Wang, H; Bäck, T H W.
Afiliación
  • Tannemaat MR; Leiden University Medical Centre, Department of Neurology, The Netherlands. Electronic address: m.r.tannemaat@lumc.nl.
  • Kefalas M; Leiden Institute of Advanced Computer Science, The Netherlands.
  • Geraedts VJ; Leiden University Medical Centre, Department of Neurology, The Netherlands; Leiden University Medical Centre, Department of Clinical Epidemiology, The Netherlands.
  • Remijn-Nelissen L; Leiden University Medical Centre, Department of Neurology, The Netherlands.
  • Verschuuren AJM; Leiden University Medical Centre, Department of Neurology, The Netherlands.
  • Koch M; Leiden Institute of Advanced Computer Science, The Netherlands.
  • Kononova AV; Leiden Institute of Advanced Computer Science, The Netherlands.
  • Wang H; Leiden Institute of Advanced Computer Science, The Netherlands.
  • Bäck THW; Leiden Institute of Advanced Computer Science, The Netherlands.
Clin Neurophysiol ; 146: 49-54, 2023 Feb.
Article en En | MEDLINE | ID: mdl-36535091
ABSTRACT

OBJECTIVE:

Distinguishing normal, neuropathic and myopathic electromyography (EMG) traces can be challenging. We aimed to create an automated time series classification algorithm.

METHODS:

EMGs of healthy controls (HC, n = 25), patients with amyotrophic lateral sclerosis (ALS, n = 20) and inclusion body myositis (IBM, n = 20), were retrospectively selected based on longitudinal clinical follow-up data (ALS and HC) or muscle biopsy (IBM). A machine learning pipeline was applied based on 5-second EMG fragments of each muscle. Diagnostic yield expressed as area under the curve (AUC) of a receiver-operator characteristics curve, accuracy, sensitivity, and specificity were determined per muscle (muscle-level) and per patient (patient-level).

RESULTS:

Diagnostic yield of the classification ALS vs. HC was AUC 0.834 ± 0.014 at muscle-level and 0.856 ± 0.009 at patient-level. For the classification HC vs. IBM, AUC was 0.744 ± 0.043 at muscle-level and 0.735 ± 0.029 at patient-level. For the classification ALS vs. IBM, AUC was 0.569 ± 0.024 at muscle-level and 0.689 ± 0.035 at patient-level.

CONCLUSIONS:

An automated time series classification algorithm can distinguish EMGs from healthy individuals from those of patients with ALS with a high diagnostic yield. Using longer EMG fragments with different levels of muscle activation may improve performance.

SIGNIFICANCE:

In the future, machine learning algorithms may help improve the diagnostic accuracy of EMG examinations.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades del Sistema Nervioso Periférico / Miositis por Cuerpos de Inclusión / Esclerosis Amiotrófica Lateral Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades del Sistema Nervioso Periférico / Miositis por Cuerpos de Inclusión / Esclerosis Amiotrófica Lateral Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2023 Tipo del documento: Article