Your browser doesn't support javascript.
loading
Efficient visible-light-driven S-scheme AgVO3/Ag2S heterojunction photocatalyst for boosting degradation of organic pollutants.
Liu, Yangbin; Liu, Nian; Lin, Minghua; Huang, Caifeng; Lei, Zhijun; Cao, Hongshuai; Qi, Fugang; Ouyang, Xiaoping.
Afiliación
  • Liu Y; School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China.
  • Liu N; School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China.
  • Lin M; School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China.
  • Huang C; School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China.
  • Lei Z; School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China.
  • Cao H; School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China.
  • Qi F; School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China.
  • Ouyang X; School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China.
  • Yun Zhou; School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China. Electronic address: zhouyun720@xtu.edu.cn.
Environ Pollut ; 325: 121436, 2023 May 15.
Article en En | MEDLINE | ID: mdl-36907242
ABSTRACT
The traditional semiconductor photocatalysts for solving the related environmental aggravation are often challenged by the recombination of photogenerated carriers. Designing an S-scheme heterojunction photocatalyst is one of the keys to tackling its practical application problems. This paper reports an S-scheme AgVO3/Ag2S heterojunction photocatalyst constructed via a straightforward hydrothermal approach that exhibits outstanding photocatalytic degradation performances to the organic dye Rhodamine B (RhB) and antibiotic Tetracycline hydrochloride (TC-HCl) driven by visible light. The results show that AgVO3/Ag2S heterojunction with a molar ratio of 61 (V6S) possesses the highest photocatalytic performances, 99% of RhB can be almost degraded by 0.1 g/L V6S within 25 min light illumination, and about 72% of TC-HCl can be photodegraded with the act of 0.3 g/L V6S under 120 min light irradiation. Meanwhile, the AgVO3/Ag2S system exhibits superior stability and maintains high photocatalytic activity after 5 repeated tests. Moreover, the EPR measurement and radical capture test identify that superoxide radicals and hydroxyl radicals mainly contribute to the photodegradation process. The present work demonstrates that constructing an S-scheme heterojunction can effectively inhibit the recombination of carriers, providing insights into the fabrication of applied photocatalysts for practical wastewater purification treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Contaminantes Ambientales / Luz Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Contaminantes Ambientales / Luz Idioma: En Año: 2023 Tipo del documento: Article