Your browser doesn't support javascript.
loading
Understanding chemistry with the symmetry-decomposed Voronoi deformation density charge analysis.
Nieuwland, Celine; Vermeeren, Pascal; Bickelhaupt, F Matthias; Fonseca Guerra, Célia.
Afiliación
  • Nieuwland C; Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
  • Vermeeren P; Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
  • Bickelhaupt FM; Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
  • Fonseca Guerra C; Institute of Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
J Comput Chem ; 44(27): 2108-2119, 2023 Oct 15.
Article en En | MEDLINE | ID: mdl-37403918
ABSTRACT
The symmetry-decomposed Voronoi deformation density (VDD) charge analysis is an insightful and robust computational tool to aid the understanding of chemical bonding throughout all fields of chemistry. This method quantifies the atomic charge flow associated with chemical-bond formation and enables decomposition of this charge flow into contributions of (1) orbital interaction types, that is, Pauli repulsive or bonding orbital interactions; (2) per irreducible representation (irrep) of any point-group symmetry of interacting closed-shell molecular fragments; and now also (3) interacting open-shell (i.e., radical) molecular fragments. The symmetry-decomposed VDD charge analysis augments the symmetry-decomposed energy decomposition analysis (EDA) so that the charge flow associated with Pauli repulsion and orbital interactions can be quantified both per atom and per irrep, for example, for σ, π, and δ electrons. This provides detailed insights into fundamental aspects of chemical bonding that are not accessible from EDA.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article