Your browser doesn't support javascript.
loading
Hepatocyte-specific O-GlcNAc transferase downregulation ameliorates nonalcoholic steatohepatitis by improving mitochondrial function.
Gonzalez-Rellan, Maria J; Parracho, Tamara; Heras, Violeta; Rodriguez, Amaia; Fondevila, Marcos F; Novoa, Eva; Lima, Natalia; Varela-Rey, Marta; Senra, Ana; Chantada-Vazquez, Maria D P; Ameneiro, Cristina; Bernardo, Ganeko; Fernandez-Ramos, David; Lopitz-Otsoa, Fernando; Bilbao, Jon; Guallar, Diana; Fidalgo, Miguel; Bravo, Susana; Dieguez, Carlos; Martinez-Chantar, Maria L; Millet, Oscar; Mato, Jose M; Schwaninger, Markus; Prevot, Vincent; Crespo, Javier; Frühbeck, Gema; Iruzubieta, Paula; Nogueiras, Ruben.
Afiliación
  • Gonzalez-Rellan MJ; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain. Electronic address: chusa.gzlz.rellan@gmail.com.
  • Parracho T; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain.
  • Heras V; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain.
  • Rodriguez A; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain.
  • Fondevila MF; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain.
  • Novoa E; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain.
  • Lima N; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain.
  • Varela-Rey M; Gene Regulatory Control in Disease, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
  • Senra A; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain.
  • Chantada-Vazquez MDP; Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, A Coruña, Spain.
  • Ameneiro C; Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
  • Bernardo G; CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio, 48160, Bizkaia, Spain.
  • Fernandez-Ramos D; CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio, 48160, Bizkaia, Spain.
  • Lopitz-Otsoa F; CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio, 48160, Bizkaia, Spain.
  • Bilbao J; CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio, 48160, Bizkaia, Spain.
  • Guallar D; Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
  • Fidalgo M; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain.
  • Bravo S; Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, A Coruña, Spain.
  • Dieguez C; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain.
  • Martinez-Chantar ML; CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio, 48160, Bizkaia, Spain.
  • Millet O; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd) Technology,
  • Mato JM; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd) Technology,
  • Schwaninger M; University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany.
  • Prevot V; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), F-59000, Lille, France.
  • Crespo J; Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain.
  • Frühbeck G; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain.
  • Iruzubieta P; Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain.
  • Nogueiras R; Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain. Electronic address: ruben.nogueiras@usc.es.
Mol Metab ; 75: 101776, 2023 09.
Article en En | MEDLINE | ID: mdl-37453647
ABSTRACT

OBJECTIVE:

O-GlcNAcylation is a post-translational modification that directly couples the processes of nutrient sensing, metabolism, and signal transduction, affecting protein function and localization, since the O-linked N-acetylglucosamine moiety comes directly from the metabolism of glucose, lipids, and amino acids. The addition and removal of O-GlcNAc of target proteins are mediated by two highly conserved enzymes O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), respectively. Deregulation of O-GlcNAcylation has been reported to be associated with various human diseases such as cancer, diabetes, and cardiovascular diseases. The contribution of deregulated O-GlcNAcylation to the progression and pathogenesis of NAFLD remains intriguing, and a better understanding of its roles in this pathophysiological context is required to uncover novel avenues for therapeutic intervention. By using a translational approach, our aim is to describe the role of OGT and O-GlcNAcylation in the pathogenesis of NAFLD.

METHODS:

We used primary mouse hepatocytes, human hepatic cell lines and in vivo mouse models of steatohepatitis to manipulate O-GlcNAc transferase (OGT). We also studied OGT and O-GlcNAcylation in liver samples from different cohorts of people with NAFLD.

RESULTS:

O-GlcNAcylation was upregulated in the liver of people and animal models with steatohepatitis. Downregulation of OGT in NAFLD-hepatocytes improved diet-induced liver injury in both in vivo and in vitro models. Proteomics studies revealed that mitochondrial proteins were hyper-O-GlcNAcylated in the liver of mice with steatohepatitis. Inhibition of OGT is able to restore mitochondrial oxidation and decrease hepatic lipid content in in vitro and in vivo models of NAFLD.

CONCLUSIONS:

These results demonstrate that deregulated hyper-O-GlcNAcylation favors NAFLD progression by reducing mitochondrial oxidation and promoting hepatic lipid accumulation.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedad del Hígado Graso no Alcohólico Límite: Animals / Humans Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedad del Hígado Graso no Alcohólico Límite: Animals / Humans Idioma: En Año: 2023 Tipo del documento: Article