Your browser doesn't support javascript.
loading
Supramolecular Radical Electronics.
Gao, Tengyang; Daaoub, Abdalghani; Pan, Zhichao; Hu, Yong; Yuan, Saisai; Li, Yaoguang; Dong, Gang; Huang, Ruiyun; Liu, Junyang; Sangtarash, Sara; Shi, Jia; Yang, Yang; Sadeghi, Hatef; Hong, Wenjing.
Afiliación
  • Gao T; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Daaoub A; Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
  • Pan Z; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Hu Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Yuan S; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Li Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Dong G; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Huang R; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Liu J; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Sangtarash S; Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
  • Shi J; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Yang Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
  • Sadeghi H; Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
  • Hong W; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology & Institute of Artificial Intelligence & IKKEM, Xiamen University, Xiamen 361005, China.
J Am Chem Soc ; 145(31): 17232-17241, 2023 Aug 09.
Article en En | MEDLINE | ID: mdl-37493612
ABSTRACT
Supramolecular radical chemistry is an emerging area bridging supramolecular chemistry and radical chemistry, and the integration of radicals into the supramolecular architecture offers a new dimension for tuning their structures and functions. Although various efforts have been devoted to the fabrication of supramolecular junctions, the charge transport characterization through the supramolecular radicals remained unexplored due to the challenges in creating supramolecular radicals at the single-molecule level. Here, we demonstrate the fabrication and charge transport investigation of a supramolecular radical junction using the electrochemical scanning tunneling microscope-based break junction (EC-STM-BJ) technique. We found that the conductance of a supramolecular radical junction was more than 1 order of magnitude higher than that of a supramolecular junction without a radical and even higher than that of a fully conjugated oligophenylenediamine molecule with a similar length. The combined experimental and theoretical investigations revealed that the radical increased the binding energy and decreased the energy gap in the supramolecular radical junction, which leads to the near-resonant transport through the supramolecular radical. Our work demonstrated that the supramolecular radical can provide not only strong binding but also efficient electrical coupling between building blocks, which provides new insights into supramolecular radical chemistry and new materials with supramolecular radicals.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article