Your browser doesn't support javascript.
loading
Diabetic cardiomyopathy - Zinc preventive and therapeutic potentials by its anti-oxidative stress and sensitizing insulin signaling pathways.
Cai, Lu; Tan, Yi; Watson, Sara; Wintergerst, Kupper.
Afiliación
  • Cai L; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Pharmacology and Toxicology, University of Louisville School of
  • Tan Y; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Pharmacology and Toxicology, University of Louisville School of
  • Watson S; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Division of Endocrinology, Department of Pediatrics, University
  • Wintergerst K; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Division of Endocrinology, Department of Pediatrics, University
Toxicol Appl Pharmacol ; 477: 116694, 2023 10 15.
Article en En | MEDLINE | ID: mdl-37739320
ABSTRACT
Oxidative stress and insulin resistance are two key mechanisms for the development of diabetic cardiomyopathy (DCM, cardiac remodeling and dysfunction). In this review, we discussed how zinc and metallothionein (MT) protect the heart from type 1 or type 2 diabetes (T1D or T2D) through its anti-oxidative function and insulin-mediated PI3K/Akt signaling activation. Both T1D and T2D-induced DCM, shown by cardiac structural remodeling and dysfunction, in wild-type mice, but not in cardiomyocyte-specific overexpressing MT mice. In contrast, mice with global MT gene deletion were more susceptible to the development of DCM. When we used zinc to treat mice with either T1D or T2D, cardiac remodeling and dysfunction were significantly prevented along with increased cardiac MT expression. To support the role of zinc homeostasis in insulin signaling pathways, treatment of diabetic mice with zinc showed the preservation of phosphorylation levels of insulin-mediated glucose metabolism-related Akt2 and GSK-3ß and even rescued cardiac pathogenesis induced by global deletion of Akt2 gene in a MT-dependent manner. These results suggest the protection by zinc from DCM is through both the induction of MT and sensitization of insulin signaling. Combined our own and other works, this review comprehensively summarized the roles of zinc homeostasis in the development and progression of DCM and its therapeutic implications. At the end, we provided pre-clinical and clinical evidence for the preventive and therapeutic potential of zinc supplementation through its anti-oxidative stress and sensitizing insulin signaling actions. Understanding the intricate connections between zinc and DCM provides insights for the future interventional approaches.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus Experimental / Diabetes Mellitus Tipo 1 / Diabetes Mellitus Tipo 2 / Cardiomiopatías Diabéticas Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus Experimental / Diabetes Mellitus Tipo 1 / Diabetes Mellitus Tipo 2 / Cardiomiopatías Diabéticas Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article