Your browser doesn't support javascript.
loading
Efficient photoreduction of carbon dioxide to ethanol using diatomic nitrogen-doped black phosphorus.
Fan, Jianhua; Wang, Xin; Ma, Jing; Liu, Xingman; Lai, Xiaoyong; Xia, Hongqiang; Liu, Yingtao.
Afiliación
  • Fan J; State Key Laboratory for High-efficiency Utilization of Coal and Green Chemicals Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. wangxin@nxu.edu.cn.
  • Wang X; State Key Laboratory for High-efficiency Utilization of Coal and Green Chemicals Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. wangxin@nxu.edu.cn.
  • Ma J; State Key Laboratory for High-efficiency Utilization of Coal and Green Chemicals Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. wangxin@nxu.edu.cn.
  • Liu X; State Key Laboratory for High-efficiency Utilization of Coal and Green Chemicals Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. wangxin@nxu.edu.cn.
  • Lai X; State Key Laboratory for High-efficiency Utilization of Coal and Green Chemicals Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. wangxin@nxu.edu.cn.
  • Xia H; State Key Laboratory for High-efficiency Utilization of Coal and Green Chemicals Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. wangxin@nxu.edu.cn.
  • Liu Y; State Key Laboratory for High-efficiency Utilization of Coal and Green Chemicals Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. wangxin@nxu.edu.cn.
Phys Chem Chem Phys ; 26(9): 7731-7737, 2024 Feb 28.
Article en En | MEDLINE | ID: mdl-38372286
ABSTRACT
Successful conversion of CO2 into C2 products requires the development of new catalysts that overcome the difficulties in efficient light harvesting and CO-CO coupling. Herein, density functional theory (DFT) is used to assess the photoreduction properties of nitrogen-doped black phosphorus. The geometric structure, redox potential, first step of hydrogenation activation, CO desorption, and CO-CO coupling are systematically calculated, based on which the diatomic nitrogen-doped black phosphorus (N2@BPV) stands out. The calculated results of the CO2RR pathway demonstrate that N2@BPV has excellent selectivity and high activity for CH3CH2OH production. The results of the time-dependent ab initio nonadiabatic molecular dynamics simulation show that the diatomic N active sites of N2@BPV facilitate charge separation and inhibit electron-hole recombination. In addition, the activation mechanism of CO2 is studied. The main reason for CO2 activation is attributed to the imbalance in electron transfer that destroys the symmetry of CO2. We expect that our study will offer some theoretical guidance in CO2 conversion.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article