Your browser doesn't support javascript.
loading
Genetically engineered membrane-based nanoengagers for immunotherapy of pancreatic cancer.
Zhang, Haoqi; Li, Yuanke; Kang, Helong; Lan, Jingping; Hou, Lin; Chen, Zhengbang; Li, Fan; Liu, Yanqin; Zhao, Jiliang; Li, Na; Wan, Yajuan; Zhu, Yiping; Zhao, Zhen; Zhang, Hongkai; Zhuang, Jie; Huang, Xinglu.
Afiliación
  • Zhang H; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Li Y; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Kang H; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Lan J; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Hou L; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Chen Z; School of Medicine, Nankai University, Tianjin, 300071, China.
  • Li F; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Liu Y; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Zhao J; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Li N; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Wan Y; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Zhu Y; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Zhao Z; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China.
  • Zhang H; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
  • Zhuang J; School of Medicine, Nankai University, Tianjin, 300071, China. zhuangj@nankai.edu.cn.
  • Huang X; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China. huangxinglu@nankai.edu.cn.
J Nanobiotechnology ; 22(1): 104, 2024 Mar 11.
Article en En | MEDLINE | ID: mdl-38468289
ABSTRACT
Modulating macrophages presents a promising avenue in tumor immunotherapy. However, tumor cells have evolved mechanisms to evade macrophage activation and phagocytosis. Herein, we introduced a bispecific antibody-based nanoengager to facilitate the recognition and phagocytosis of tumor cells by macrophages. Specifically, we genetically engineered two single chain variable fragments (scFv) onto cell membrane anti-CD40 scFv for engaging with macrophages and anti-Claudin18.2 (CLDN18.2) scFv for interacting with tumor cells. These nanoengagers were further constructed by coating scFv-anchored membrane into PLGA nanoparticle core. Our developed nanoengagers significantly boosted immune responses, including increased recognition and phagocytosis of tumor cells by macrophages, enhanced activation and antigen presentation, and elevated cytotoxic T lymphocyte activity. These combined benefits resulted in enhancing antitumor efficacy against highly aggressive "cold" pancreatic cancer. Overall, this study offers a versatile nanoengager design for immunotherapy, achieved through genetically engineering to incorporate antibody-anchored membrane.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Anticuerpos Biespecíficos / Neoplasias Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Anticuerpos Biespecíficos / Neoplasias Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article