Your browser doesn't support javascript.
loading
Achieving High Isotropic Figure of Merit in Cd and in Codoped Polycrystalline SnSe.
Huang, Xinqi; Gong, Yaru; Liu, Yuqi; Dou, Wei; Li, Song; Xia, Qinxuan; Xiang, Deshang; Li, Di; Ying, Pan; Tang, Guodong.
Afiliación
  • Huang X; National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Gong Y; National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Liu Y; National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Dou W; National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Li S; National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Xia Q; National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Xiang D; National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Li D; Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
  • Ying P; National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Tang G; National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
Article en En | MEDLINE | ID: mdl-38593180
ABSTRACT
Here, we combined Cd and In codoping with a simple hydrothermal synthesis method to prepare SnSe powders composed of nanorod-like flowers. After spark plasma sintering, its internal grains inherited well the morphological features of the precursor, and the multiscale microstructure included nanorod-shaped grains, high-density dislocations, and stacking faults, as well as abundant nanoprecipitates, resulting in an ultralow thermal conductivity of 0.15 W m-1 K-1 for the synthesized material. At the same time, Cd and In synergistically regulated the electrical conductivity and Seebeck coefficient of SnSe, leading to an enhanced power factor. Among them, Sn0.94Cd0.03In0.03Se achieved a peak ZT of 1.50 parallel to the pressing direction, representing an 87.5% improvement compared with pure SnSe. Notably, the material possesses isotropic ZT values parallel and perpendicular to the pressing direction, overcoming the characteristic anisotropy in thermal performance observed in previous polycrystalline SnSe-based materials. Our results provide a new strategy for optimizing the performance of thermoelectric materials through structural engineering.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article