Your browser doesn't support javascript.
loading
miR-584-5p / Ykt6 - mediated autophagy - lysosome - exosome pathway as a critical route affecting the toxic effects of lead on HK-2 cells.
Xiong, Yiren; Hu, Zuqing; Ouyang, Di; Tang, Meilin; He, Jiayi; He, Shanshan; Liu, Renyi; Gao, Zhenjie; Chen, Ying; Hu, Dalin.
Afiliación
  • Xiong Y; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
  • Hu Z; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
  • Ouyang D; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
  • Tang M; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
  • He J; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
  • He S; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
  • Liu R; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
  • Gao Z; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
  • Chen Y; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
  • Hu D; Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan Dsitrict, Shenzhen City 518000, China; Grade 2020 U
Ecotoxicol Environ Saf ; 276: 116322, 2024 May.
Article en En | MEDLINE | ID: mdl-38636258
ABSTRACT
Lead is a widespread environmental pollutant with serious adverse effects on human health, but the mechanism underlying its toxicity remains elusive. This study aimed to investigate the role of miR-584-5p / Ykt6 axis in the toxic effect of lead on HK-2 cells and the related mechanism. Our data suggested that lead exposure caused significant cytotoxicity, DNA and chromosome damage to HK-2 cells. Mechanistically, lead exposure down-regulated miR-584-5p and up-regulated Ykt6 expression, consequently, autophagosomal number and autophagic flux increased, lysosomal number and activity decreased, exosomal secretion increased. Interestingly, when miR-584-5p level was enhanced with mimic, autophagosomal number and autophagic flux decreased, lysosomal number and activity increased, ultimately, exosomal secretion was down-regulated, which resulted in significant aggravated toxic effects of lead. Further, directly blocking exosomal secretion with inhibitor GW4869 also resulted in exacerbated toxic effects of lead. Herein, we conclude that miR-584-5p / Ykt6 - mediated autophagy - lysosome - exosome pathway may be a critical route affecting the toxic effects of lead on HK-2 cells. We provide a novel insight into the mechanism underlying the toxicity of lead on human cells.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Autofagia / MicroARNs / Exosomas / Plomo / Lisosomas Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Autofagia / MicroARNs / Exosomas / Plomo / Lisosomas Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article