Your browser doesn't support javascript.
loading
Physiological temperature drives TRPM4 ligand recognition and gating.
Hu, Jinhong; Park, Sung Jin; Walter, Tyler; Orozco, Ian J; O'Dea, Garrett; Ye, Xinyu; Du, Juan; Lü, Wei.
Afiliación
  • Hu J; Van Andel Institute, Grand Rapids, MI, USA.
  • Park SJ; Van Andel Institute, Grand Rapids, MI, USA.
  • Walter T; Van Andel Institute, Grand Rapids, MI, USA.
  • Orozco IJ; Zoetis, Kalamazoo, MI, USA.
  • O'Dea G; Van Andel Institute, Grand Rapids, MI, USA.
  • Ye X; AnaBios, San Diego, CA, USA.
  • Du J; Van Andel Institute, Grand Rapids, MI, USA.
  • Lü W; Van Andel Institute, Grand Rapids, MI, USA.
Nature ; 630(8016): 509-515, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38750366
ABSTRACT
Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity1,2. However, its impact is often overlooked in biophysical studies that are typically performed at non-physiological temperatures, potentially leading to inaccurate mechanistic and pharmacological insights. Here we demonstrate temperature-dependent changes in the structure and function of TRPM4, a temperature-sensitive Ca2+-activated ion channel3-7. By studying TRPM4 prepared at physiological temperature using single-particle cryo-electron microscopy, we identified a 'warm' conformation that is distinct from those observed at lower temperatures. This conformation is driven by a temperature-dependent Ca2+-binding site in the intracellular domain, and is essential for TRPM4 function in physiological contexts. We demonstrated that ligands, exemplified by decavanadate (a positive modulator)8 and ATP (an inhibitor)9, bind to different locations of TRPM4 at physiological temperatures than at lower temperatures10,11, and that these sites have bona fide functional relevance. We elucidated the TRPM4 gating mechanism by capturing structural snapshots of its different functional states at physiological temperatures, revealing the channel opening that is not observed at lower temperatures. Our study provides an example of temperature-dependent ligand recognition and modulation of an ion channel, underscoring the importance of studying macromolecules at physiological temperatures. It also provides a potential molecular framework for deciphering how thermosensitive TRPM channels perceive temperature changes.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Temperatura / Activación del Canal Iónico / Canales Catiónicos TRPM Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Temperatura / Activación del Canal Iónico / Canales Catiónicos TRPM Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article