Your browser doesn't support javascript.
loading
Induction of in vivo-like ciliation in confluent monolayers of re-differentiated equine oviduct epithelial cells.
Leemans, Bart; Gadella, Bart M; Marchand, Josephine H E A M; Van Soom, Ann; Stout, Tom A E.
Afiliación
  • Leemans B; Departments of Clinical Sciences.
  • Gadella BM; Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Belgium.
  • Marchand JHEAM; Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Belgium.
  • Van Soom A; Biomolecular Health Sciences.
  • Stout TAE; Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
Biol Reprod ; 2024 Jun 07.
Article en En | MEDLINE | ID: mdl-38847468
ABSTRACT
We recently developed re-differentiated equine oviduct epithelial cell (REOEC) monolayers demonstrating various in vivo morphological characteristics, but lacking secondary ciliation. In this study, we evaluated the effects of fetal bovine serum, reproductive steroid hormones, Wnt- and Notch ligands and inhibitors, and different EOEC seeding densities, in both conventional wells and on microporous membranes, on EOEC morphology and, in particular, secondary ciliation. REOEC monolayers were assessed by confocal microscopy after combined staining of nuclei, cilia and the cytoskeleton. Only Wnt ligands, Notch inhibitors and oviduct explant cell concentration affected EOEC morphology. Undesirable epithelial-mesenchymal transition was observed in REOEC monolayers exposed to Wnt3a containing medium and Wnt ligand CHIR 99021. With respect to secondary ciliation, only the combined effect of oviduct explant cell concentration and Notch inhibition steered REOEC monolayers to in vivo-like ciliation patterns. De-differentiated EOECs, formed 10 days after oviduct explant cell seeding, were reseeded on inserts; only at initial oviduct explant cell concentrations of 1 and 5 x106 cells per well was the formation of REOEC monolayers with a high rate of diffuse ciliation supported. Within 1 month after air-liquid interface introduction, >40% and > 20% of the REOECs showed secondary cilia, respectively. At higher oviduct explant cell seeding densities secondary ciliation was not supported after re-differentiation. Additionally, Notch inhibition helped boost secondary ciliation rates to >60% in REOEC monolayers with diffuse ciliation only. These monolayers demonstrated higher clathrin expression under follicular phase conditions. Overall, the ciliated REOEC monolayers better resemble in vivo oviduct epithelial cells than previous models.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article