Your browser doesn't support javascript.
loading
Recent advancements in implantable neural links based on organic synaptic transistors.
Biswas, Swarup; Jang, Hyo-Won; Lee, Yongju; Choi, Hyojeong; Kim, Yoon; Kim, Hyeok; Zhu, Yangzhi.
Afiliación
  • Biswas S; School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea.
  • Jang HW; School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea.
  • Lee Y; School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea.
  • Choi H; Terasaki Institute for Biomedical Innovation Los Angeles California USA.
  • Kim Y; School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea.
  • Kim H; Terasaki Institute for Biomedical Innovation Los Angeles California USA.
  • Zhu Y; School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea.
Exploration (Beijing) ; 4(2): 20220150, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38855618
ABSTRACT
The progress of brain synaptic devices has witnessed an era of rapid and explosive growth. Because of their integrated storage, excellent plasticity and parallel computing, and system information processing abilities, various field effect transistors have been used to replicate the synapses of a human brain. Organic semiconductors are characterized by simplicity of processing, mechanical flexibility, low cost, biocompatibility, and flexibility, making them the most promising materials for implanted brain synaptic bioelectronics. Despite being used in numerous intelligent integrated circuits and implantable neural linkages with multiple terminals, organic synaptic transistors still face many obstacles that must be overcome to advance their development. A comprehensive review would be an excellent tool in this respect. Therefore, the latest advancements in implantable neural links based on organic synaptic transistors are outlined. First, the distinction between conventional and synaptic transistors are highlighted. Next, the existing implanted organic synaptic transistors and their applicability to the brain as a neural link are summarized. Finally, the potential research directions are discussed.
Palabras clave