Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article in English | WPRIM | ID: wpr-928950

ABSTRACT

OBJECTIVE@#To explore the effect of Kuanxiong Aerosol (KXA) on isoproterenol (ISO)-induced myocardial injury in rat models.@*METHODS@#Totally 24 rats were radomly divided into control, ISO, KXA low-dose and high-dose groups according to the randomized block design method, and were administered by intragastric administration for 10 consecutive days, and on the 9th and 10th days, rats were injected with ISO for 2 consecutive days to construct an acute myocardial ischemia model to evaluate the improvement of myocardial ischemia by KXA. In addition, the diastolic effect of KXA on rat thoracic aorta and its regulation of ion channels were tested by in vitro vascular tension test. The influence of KXA on the expression of calcium-CaM-dependent protein kinase II (CaMK II)/extracellular regulated protein kinases (ERK) signaling pathway has also been tested.@*RESULTS@#KXA significantly reduced the ISO-induced increase in ST-segment, interventricular septal thickness, cardiac mass index and cardiac tissue pathological changes in rats. Moreover, the relaxation of isolated thoracic arterial rings that had been precontracted using norepinephrine (NE) or potassium chloride (KCl) was increased after KXA treatment in an endothelium-independent manner, and was attenuated by preincubation with verapamil, but not with tetraethylammonium chloride, 4-aminopyridine, glibenclamide, or barium chloride. KXA pretreatment attenuated vasoconstriction induced by CaCl2 in Ca2+-free solutions containing K+ or NE. In addition, KXA pretreatment inhibited accumulation of Ca2+ in A7r5 cells mediated by KCl and NE and significantly decreased p-CaMK II and p-ERK levels.@*CONCLUSION@#KXA may inhibit influx and release of calcium and activate the CaMK II/ERK signaling pathway to produce vasodilatory effects, thereby improving myocardial injury.


Subject(s)
Animals , Rats , Aerosols , Aorta, Thoracic , Calcium/metabolism , Endothelium, Vascular/metabolism , Myocardial Ischemia/metabolism , Vasodilation
2.
Article in English | WPRIM | ID: wpr-827478

ABSTRACT

OBJECTIVE@#To evaluate the inhibitory effect of bear bile powder (BBP) on hepatocellular carcinoma (HCC) growth in vivo and investigate the underlying mechanisms.@*METHODS@#A HCC xenograft mouse model was developed by producing with huh7 cells. After 5 days following xenograft implantation, ten HCC xenograft mice were given intra-gastric administration with 10 mg/(kg•d) dose of BBP or saline for 3 weeks. Tumor growth in HCC xenograft mice was evaluated by measuring the tumor weight and volume. Cell apoptosis, proliferation or tumor angiogenesis were examined via immunohistochemical (IHC) staining for transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL), proliferating cell nuclear antigen (PCNA) or cluster of differentiation 31 (CD31), respectively. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) were determined by Western blot. The mRNA and protein expressions of Bcl-2, Bax, Cyclin D1 and Cyclin-dependent kinase 4 (CDK4) in HCC tumor tissues were respectively determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. The protein expression of vascular endothelial growth factor A (VEGF-A) in tumor tissues was examined by IHC staining.@*RESULTS@#BBP treatment led to a significant decrease on tumor volume and tumor weight in HCC mice (P<0.05) and had no effect on the change of body weight. In addition, BBP profoundly promoted cell apoptosis, inhibited cell proliferation and intratumoral microvessel density in HCC tumor tissues (P<0.05). Moreover, BBP treatment remarkably suppressed the STAT3 phosphorylation and modulated the expression of critical target genes including Bcl-2, Bax, Cyclin D1, CDK4 and VEGF-A in HCC mice.@*CONCLUSION@#BBP exerts its anti-cancer activities via suppressing STAT3 signaling pathway and affecting multiple intracellular targets.


Subject(s)
Animals , Mice , Bile , Biological Products , Pharmacology , Carcinoma, Hepatocellular , Drug Therapy , Cell Line, Tumor , Disease Models, Animal , Liver Neoplasms , Drug Therapy , Medicine, Chinese Traditional , Mice, Inbred BALB C , Powders , STAT3 Transcription Factor , Metabolism , Ursidae
3.
Article in Chinese | WPRIM | ID: wpr-294360

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effect of bear bile powder (BBP) on the STAT3 pathway and its downstream target genes of nude mice hepatocellular carcinoma (HCC) xenograft, and to explore its mechanism for treating HCC.</p><p><b>METHODS</b>The subcutaneous xenograft model was established using HepG2 cells. When the subcutaneous transplanted tumor was formed, naked mice were randomly divided into two groups, the BBP group and the control group. Mice in the BBP group were administered with BBP by gastrogavage, once daily for 3 consecutive weeks, while mice in the control group were administered with normal saline by gastrogavage, once daily for 3 consecutive weeks. The body weight and the tumor volume were measured once per week. By the end of medication, the tumor weight was weighed and the tumor inhibition ratio calculated. The apoptosis of the tumor tissue was detected by TdT-mediated dUTP nick end labeling (TUNEL). The expression of Bcl2-associated X protein (Bax), B cell lymphoma/eukemina-2 (Bcl-2), cyclin-dependent protein kinase (CDK4), cyclinD1 were detected by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression levels of signal transducers and transcription activators 3 (p-STAT3), proliferating cell nuclear antigen (PCNA), Bax, Bcl-2, CDK4, and cyclinD1 were determined by immunohistochemistry.</p><p><b>RESULTS</b>BBP could inhibit the tumor volume and tumor weight, showing statistical difference when compared with the control group (P < 0.01). Results of TUNEL showed that BBP could significantly induce the apoptosis of hepatoma carcinoma cells. Results of RT-PCR showed that BBP could up-regulate the expression of Bax and down-regulate mRNA expression of Bcl-2, CDK4, and cyclinD1. Immunohistochemical results showed that BBP could up-regulate the expression of Bax and inhibit the protein expression of p-STAT3, PCNA, Bcl-2, CDK4, and cyclinD1.</p><p><b>CONCLUSION</b>BBP could induce the apoptosis of hepatoma carcinoma cells and inhibit their proliferation by regulating STAT3 pathway.</p>


Subject(s)
Animals , Humans , Male , Mice , Bile , Carcinoma, Hepatocellular , Metabolism , Pathology , Cyclin D1 , Metabolism , Cyclin-Dependent Kinase 4 , Metabolism , Drugs, Chinese Herbal , Pharmacology , Hep G2 Cells , Liver Neoplasms , Metabolism , Pathology , Mice, Inbred BALB C , Mice, Nude , Proto-Oncogene Proteins c-bcl-2 , Metabolism , STAT3 Transcription Factor , Metabolism , Signal Transduction , Ursidae , Xenograft Model Antitumor Assays , bcl-2-Associated X Protein , Metabolism
4.
Article in English | WPRIM | ID: wpr-347159

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the anti-angiogenic effects of Pien Tze Huang in vivo and in vitro.</p><p><b>METHODS</b>Human umbilical vein endothelial cells (HUVECs) were treated with 0 mg/mL, 0.25 mg/mL, 0.5 mg/mL, and 1 mg/mL of PZH for 24 h, 48 h and 72 h, respectively. Chicken embryo chorioallantoic membrane (CAM) model was used to evaluate in vivo angiogenesis. An ECMatrix gel system was used to evaluate in vitro angiogenesis by examining the tube formation of HUVECs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine HUVEC viability. Cell density of HUVECs was observed by phase-contrast microscopy. HUVEC migration was determined by wound healing method. The mRNA and protein expression of vascular endothelial growth factor A (VEGF-A) and basic fibroblast growth factor (bFGF) in both HUVEC and human colon adenocarcinoma cells (HT-29) was examined by reverse transcription polymerase chain reaction (RT-PCR) and enzyme linked immune sorbent assay (ELISA), respectively.</p><p><b>RESULTS</b>PZH treatment significantly reduced the total number of blood vessels compared with the untreated control in the chicken embryos and resulted in a significant decrease in capillary tube formation and cell density of HUVECs (P<0.05). In addition, treatment with 0.25-1 mg/mL of PZH for 24 h, 48 h, and 72 h respectively reduced cell viability by 9%-52%, 24%-87% or 25%-87%, compared with the untreated control cells (P<0.05). Moreover, PZH treatment decreased the migration of HUVECs. Furthermore, PZH dose-dependently suppressed the expression of VEGF-A and bFGF on both mRNA and protein levels (P<0.05).</p><p><b>CONCLUSION</b>PZH could inhibit angiogenesis in vivo in CAM model and in vitro on HUVECs, suggesting that inhibiting tumor angiogenesis might be one of the mechanisms by which PZH treats cancer.</p>


Subject(s)
Animals , Chick Embryo , Humans , Cell Movement , Cell Proliferation , Cell Survival , Chorioallantoic Membrane , Drugs, Chinese Herbal , Pharmacology , Fibroblast Growth Factor 2 , Genetics , Metabolism , Gene Expression Regulation , HT29 Cells , Human Umbilical Vein Endothelial Cells , Cell Biology , Metabolism , Neovascularization, Physiologic , Genetics , RNA, Messenger , Genetics , Metabolism , Vascular Endothelial Growth Factor A , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL