Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
PLoS One ; 18(10): e0287080, 2023.
Article in English | MEDLINE | ID: mdl-37883497

ABSTRACT

Multi-drug resistant bacteria sometimes known as "superbugs" developed through overuse and misuse of antibiotics are determined to be sensitive to small concentrations of silver nanoparticles. Various methods and sources are under investigation for the safe and efficient synthesis of silver nanoparticles having effective antibacterial activity even at low concentrations. We used a medicinal plant named Salvia moorcroftiana to extract phytochemicals with antibacterial, antioxidant, and reducing properties. Three types of solvents; from polar to nonpolar, i.e., water, dimethyl sulfoxide (DMSO), and hexane, were used to extract the plant as a whole and as well as in fractions. The biosynthesized silver nanoparticles in all extracts (except hexane-based extract) were spherical, smaller than 20 nm, polydispersed (PDI ranging between 0.2 and 0.5), and stable with repulsive force of action (average zeta value = -18.55±1.17). The tested bacterial strains i.e., Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis were found to be sensitive to even small concentrations of Ag-NPs, especially P. aeruginosa. The antibacterial effect of these Ag-NPs was associated with their ability to generate reactive oxygen species. DMSO (in fraction) could efficiently extract antibacterial phytochemicals and showed activity against MDR bacteria (inhibition zone = 11-12 mm). Thus, the antibacterial activity of fractionated DMSO extract was comparable to that of Ag-NPs because it contained phytochemicals having solid antibacterial potential. Furthermore, Ag-NPs synthesized from this extract owned superior antibacterial activity. However, whole aqueous extract-based Ag-NPs MIC was least (7-32 µg/mL) as compared to others.


Subject(s)
Metal Nanoparticles , Metal Nanoparticles/chemistry , Silver/chemistry , Hexanes , Solvents , Dimethyl Sulfoxide , Anti-Bacterial Agents/chemistry , Bacteria , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests
2.
PLoS One ; 18(4): e0280553, 2023.
Article in English | MEDLINE | ID: mdl-37014921

ABSTRACT

Green synthesis of nanoparticles is becoming a method of choice for biological research due to its environmentally benign outcomes, stability and ease of synthesis. In this study, silver nanoparticles (AgNPs) were synthesized using stem (S-AgNPs), root (R-AgNPs) and mixture of stem and root (RS-AgNPs) of Delphinium uncinatum. The synthesized nanoparticles were characterized by standardized techniques and evaluated for their antioxidant, enzyme inhibition, cytotoxic and antimicrobial potentials. The AgNPs exhibited efficient antioxidant activities and considerable enzyme inhibition potential against alpha amylase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. S-AgNPs showed strong cytotoxicity against human hepato-cellular carcinoma cells (HepG2) and high enzyme inhibitory effect (IC50 values 27.5µg/ml for AChE and 22.60 µg/ml for BChE) compared to R-AgNPs and RS-AgNPs. RS-AgNPs showed significant inhibition of Klebsiella pneumoniae and Aspergillus flavus and exhibited higher biocompatibility (<2% hemolysis) in human red blood cells hemolytic assays. The present study showed that biologically synthesized AgNPs using the extract of various parts of D. uncinatum have strong antioxidant and cytotoxic potentials.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Metal Nanoparticles , Humans , Antioxidants/pharmacology , Acetylcholinesterase , Butyrylcholinesterase , Plant Extracts/pharmacology , Silver/pharmacology , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Anti-Bacterial Agents/pharmacology
3.
Biotech Histochem ; 98(1): 29-37, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35775276

ABSTRACT

Water hyssop (Bacopa monnieri L. Pennel) is a medicinal aquatic herb used to treat diseases in South Asia. Various regeneration protocols have been developed or modified in vitro to ensure the availability of biomass and secondary metabolites of Bacopa. We applied hydrothermally treated titanium dioxide (TiO2) nanoparticles (NPs) (TiO2-NPs) at different concentrations. Three explants, distal portion of half leaf (DPHL), proximal portion of half leaf (PPHL) and full leaf (FL), were used to evaluate response to TiO2. Regeneration from the three explants in vitro was similar except for shoot length. Application of TiO2-NPs exerted significant, but variable, effects on all parameters except percentage of shoot formation, which was 100%. Interactive effects of explant and TiO2-NPs exhibited significant, but variable, effects on fresh weight and percentage of callus formation. All explants produced more shoots using TiO2-NPs compared to control treatments. DPHL explants with application of 8 mg/l TiO2 produced more shoots than controls. Similarly, FL explant treated with 2 mg/l TiO2-NPs produced more shoots/explant than controls. All concentrations of TiO2-NPs produced significantly longer shoots compared to controls. Increased elongation of shoots justifies use of TiO2-NPs for propagation of plants in vitro during acclimatization. Use of TiO2-NPs for rapid elongation of shoots ultimately fosters survival of plants.


Subject(s)
Bacopa , Nanoparticles , Plants, Medicinal , Bacopa/metabolism , Plant Shoots/physiology , Regeneration
4.
PLoS One ; 17(8): e0273416, 2022.
Article in English | MEDLINE | ID: mdl-35998181

ABSTRACT

Stress associated proteins (SAPs) in plants have a key role in providing tolerance to multiple abiotic stresses. SAP gene family in Solanum tuberosum has not been fully studied before. This study identified 17 StSAP genes in S. tuberosum which code for A20/AN1 zinc-finger proteins. All the genes were distributed on ten different chromosomes and six segmental duplication events were identified. The SAPs in S. tuberosum and its orthologs in Arabidopsis thaliana were classified into six groups through the phylogenetic analysis. Introns across StSAP genes were identified in four genes. The promotor study of the StSAP genes showed different hormone and stress-related cis-elements that could potentially have a role in environmental stress response. The expression of StSAP genes in response to heat, mannitol, and salt were analyzed through in silico transcriptomic analysis. This study could potentially help in further understanding the functions of SAP genes in S. tuberosum.


Subject(s)
Arabidopsis , Solanum tuberosum , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Stress, Physiological/genetics , Zinc/metabolism
5.
Mol Biol Rep ; 49(7): 7135-7143, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35717478

ABSTRACT

BACKGROUND: The phytochemicals contained in hemp are highly significant and can be modified or altered by employing in vitro elicitors like nanoparticles (NPs). Application of NPs type, concentration, and treatment time regulate the germination, growth, and phytohemicals. METHODS AND RESULTS: In vitro sterilized seeds of cannabis were augmented on Murashige and Skoog (MS) medium supplemented with silver (Ag) and titanium dioxide (TiO2) nanoparticles at different concentrations (0, 200, 400, 800, 1200 and 1600 mg/L) for one month. Results revealed that supplementation of NPs resulted in reduced germination (%), root length and longer shoots and seedling fresh wt compared to control. CONCLUSIONS: Maximum germination was recorded on MS medium supplemented with 1600 mg/L TiO2NPs (92.50%) followed by 1600 mg/L AgNPs (80.00%). Supplementation of 800 mg/L AgNPs yielded longer shoots, roots, seedlings fresh weight, and chlorophyll-b contents compared to all other treatments. Whereas, maximum chlorophyll-a, carotenoids, and MDA contents were attributed to 1200 mg/L TiO2NPs. PCR results using eight iPBS-retrotransposons primers yielded a total of 101 bands with 98 polymorphic bands. Whereas, minimum (0.28) and maximum (0.42) gene diversity was associated with 2095 and 2228 primers.


Subject(s)
Cannabis , Metal Nanoparticles , Nanoparticles , Chlorophyll , Genetic Variation , Germination/genetics , Nanoparticles/chemistry , Retroelements , Seedlings/genetics
6.
Molecules ; 27(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684382

ABSTRACT

Diabetes mellitus is a metabolic disorder and is a global challenge to the current medicinal chemists and pharmacologists. This research has been designed to isolate and evaluate antidiabetic bioactives from Fragaria indica. The crude extracts, semi-purified and pure bioactives have been used in all in vitro assays. The in vitro α-glucosidase, α-amylase and DPPH free radical activities have been performed on all plant samples. The initial activities showed that ethyl acetate (Fi.EtAc) was the potent fraction in all the assays. This fraction was initially semi-purified to obtain Fi.EtAc 1-3. Among the semi-purified fractions, Fi.EtAc 2 was dominant, exhibiting potent IC50 values in all the in vitro assays. Based on the potency and availability of materials, Fi.EtAc 2 was subjected to further purification to obtain compounds 1 (2,4-dichloro-6-hydroxy-3,5-dimethoxytoluene) and 2 (2-methyl-6-(4-methylphenyl)-2-hepten-4-one). The two isolated compounds were characterized by mass and NMR analyses. The compounds 1 and 2 showed excellent inhibitions against α-glucosidase (21.45 for 1 and 15.03 for 2 µg/mL), α-amylase (17.65 and 16.56 µg/mL) and DPPH free radicals (7.62 and 14.30 µg/mL). Our study provides baseline research for the antidiabetic bioactives exploration from Fragaria indica. The bioactive compounds can be evaluated in animals-based antidiabetic activity in future.


Subject(s)
Fragaria , alpha-Glucosidases , Animals , Antioxidants/chemistry , Fragaria/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
7.
Pak J Pharm Sci ; 34(2(Supplementary)): 737-745, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34275809

ABSTRACT

Present study is aimed to investigate the hepatoprotective and hematopoietic effect of Typha elephantina leaves aqueous (T.E.AQ), extract in paracetamol (PCM) intoxicated rabbits. Experimental animals were divided into various groups. The blood was taken on day 7th (W1=Week 1), day 14th (W2 = week 2) and day 21st (W3 = week 3) of treatments and was analyzed for all hematological and serum biochemical markers. PCM administration caused marked increase in the levels of serum biochemical and hematological parameters. The leaves of T.E.AQ extract at dose rate 300mg/kg body weight significantly (P<0.05) reduced the elevated levels of serum biochemical and hematological indices towards normal values on third week (day 21st) of treatment while treatment in the first two weeks revealed non-significant effects even at all doses of extract. The levels of glutathione (GSH) and radical scavenging activity (RSA) were reduced and thiobarbituric acid reactive substances (TBARS) levels was high in the PCM feed animals. Administration of (T.E.AQ) extract at high dose (300mg/kg) significantly regulated and normalized these antioxidant values. The antioxidant capacity of (TE.AQ) extract, showed increase inhibition against various extract concentrations on the basis of percent scavenging of (DPPH) free radical. The histological sections of liver further supported the hepatoprotective activity of extract.


Subject(s)
Acetaminophen/antagonists & inhibitors , Analgesics, Non-Narcotic/toxicity , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Typhaceae/chemistry , Acetaminophen/toxicity , Animals , Dose-Response Relationship, Drug , Free Radical Scavengers/metabolism , Glutathione/metabolism , Liver/drug effects , Liver/metabolism , Male , Rabbits
8.
Plant Cell Tissue Organ Cult ; 147(2): 287-296, 2021.
Article in English | MEDLINE | ID: mdl-34149126

ABSTRACT

The callus cultures of Fagonia indica could prove as factories for the production of important phytochemicals when triggered through different types of stress. In this study, we initiated callus cultures from healthy stem explants in the presence of iron-doped zinc oxide nanoparticles (Fe-ZnO-NPs). We performed experiments with the callus cultures of F. indica to determine the impact of Fe-ZnO-NPs in concentrations (15.62-250 µg/mL) on biomass accumulation, production of important phenolic and flavonoids, and antioxidative potential. Our results showed that maximum callus biomass [Fresh weight (FW) = 13.6 g and Dry weight (DW) = 0.58 ± 0.01] was produced on day 40 when the media was supplemented with 250 µg/mL Fe-ZnO-NPs. Similarly, maximum total phenolic content (268.36 µg GAE/g of DW) was observed in 40 days old callus added with 125 µg/mL Fe-ZnO-NPs. Maximum total flavonoid content (78.56 µg QE/g of DW) was recorded in 20 days old callus grown in 62.5 µg/mL Fe-ZnO-NPs containing media. Maximum total antioxidant capacity (390.74 µg AAE/g of DW) was recorded in 40 days old callus with 125 µg/mL Fe-ZnO-NPs treated cultures, respectively. Similarly, the highest free radical scavenging activity (93.02%) was observed in callus derived from media having 15.62 µg/mL Fe-ZnO-NPs. The antioxidant potential was observed to have positive correlation with TPC (r = 0.44). HPLC analysis showed that Fe-ZnO-NPs produced compounds (e.g., Epigallocatechin gallate) that were either absent or in lesser quantities in the control group. These results showed that Fe-ZnO-NPs elicitors could increase the biomass and activate secondary metabolism in F. indica cells. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11240-021-02123-1.

9.
AMB Express ; 9(1): 75, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31134363

ABSTRACT

Fagonia indica is a widely known medicinal plant. The extracts of Fagonia species contain secondary metabolites such as flavonoids, phenolic compounds, and terpenoids. Silver nanoparticles are known for antibacterial properties. In this study, AgNPs were synthesized using the callus extract of F. indica as a reducing agent. Characterization through different techniques suggests that the AgNPs absorbed light and gave SPR peaks at 414 nm while in case of ciprofloxacin supplemented callus mediated AgNPs the peak were recorded at 419 nm. Furthermore, FTIR analysis revealed the role of amides, acyl group, nitro group of callus extract of F. indica, and some functional groups of the ciprofloxacin in the reduction process as well as the capping and stabilization of AgNPs. Similarly, X-Ray Diffraction analysis indicate the structure of AgNPs as face-centered cubic crystalline particles. The antibacterial activity of AgNPs and ciprofloxacin and callus extract as control against resistant bacteria such as Escherichia coli, Citrobacter amalonaticus, Shigella sonnei, and Salmonella typhi was studied. The combination of AgNPs and antibiotic showed better antibacterial activity as compared to AgNPs alone and ciprofloxacin alone. Maximum inhibition zone of E. coli, C. amalonaticus, S. sonnei, and S. typhi in response to AgNPs and ciprofloxacin was 38.5 mm, 35.5 mm, 33 mm, and 35.5 mm, respectively. It can, therefore, be suggested that the AgNPs along with Ciprofloxacin might have worked in interaction and resulted in better antibacterial activity against all the tested pathogens.

10.
IET Nanobiotechnol ; 12(8): 1062-1066, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30964014

ABSTRACT

Cassia absus is used for medicinal purposes for a long time all over the world. In this study, the authors report the antimicrobial potential of C. absus extracts obtained with different solvents. The extract(s) obtained with ethyl acetate yielded the best antibacterial effects because of a rich supply of oxalates and alkaloids in it. The same extract was also exploited for reducing Ag+ ions (to metallic Ag0) for the synthesis of nanoparticles. Electron microscopy revealed that the silver nanoparticles were ∼18-25 nm in diameter. The Fourier-transform infrared evaluation pointed towards the fact that flavonoids present in the plant extract were acting as reductants while amino groups were the bound stabilisation agents to the synthesised nanoparticles limiting the diameter to a certain threshold and avoiding aggregation naturally. A comparative antibacterial assay of C. absus versus Ag nanoparticles showed that the nanoparticles as well as organic (ethyl acetate) extract of the plant checked the growth of selected (MDR) superbugs. However, the biosynthesised Ag nanoparticles returned better antibacterial efficacies than ethyl acetate extract.


Subject(s)
Anti-Bacterial Agents , Cassia/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Plant Extracts , Silver , Acetates , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , Seeds/chemistry , Silver/chemistry , Silver/metabolism , Silver/pharmacology
11.
ScientificWorldJournal ; 2013: 680425, 2013.
Article in English | MEDLINE | ID: mdl-23853539

ABSTRACT

Dwarf hygro (Hygrophila polysperma) is an ornamental aquatic plant that changes its leaf colours to pinkish in high light. It is listed as a medicinal plant in medicinal plant lists of Indian states of West Bengal and Karnataka. It is also used as a screening tool for toxicities and a bioindicator to detect and control algae. The study reported in vitro adventitious shoot regeneration from leaf explants cultured on MS medium containing 0.10-1.60 mg/L Kin/TDZ with or without 0.10 mg/L IBA and 500 mg/L Amoklavin to eradicate endogenic bacterial contamination. Direct adventitious shoot regeneration started within one week from both culture mediums followed by late callus induction which was more prominent on TDZ containing media compared to Kin containing media. Addition of 0.10 mg/L IBA with both Kin and TDZ increased shoot regeneration frequency, mean number of shoots per explant, and mean shoot length. Maximum number of 16.33 and 20.55 shoots per explant was obtained on MS medium containing 0.80 + 0.10 mg/L Kin-IBA and 0.10 + 0.10 mg/L TDZ-IBA, respectively. Regenerated shoots were rooted on MS medium containing 0.20-1.00 mg/L IBA followed by successfull acclimatization in aquariums. Regenerated plantlets were also tested in jars containing distilled water that showed the pH 6-9 for the best plant growth and development.


Subject(s)
Acanthaceae/growth & development , Plant Leaves/growth & development , Plant Shoots/growth & development , Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL