Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Anim Biotechnol ; 35(1): 2309955, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38323808

ABSTRACT

Lysozymes, efficient alternative supplements to antibiotics, have several benefits in poultry production. In the present study, 120, one-day-old, Ross 308 broiler chickens of mixed sex, were allocated into 2 equal groups, lysozyme treated group (LTG) and lysozyme free group (LFG), to evaluate the efficacy of lysozyme (Lysonir®) usage via both drinking water (thrice) and spray (once). LTG had better (p = 0.042) FCR, and higher European production efficiency factor compared to LFG (p = 0.042). The intestinal integrity score of LTG was decreased (p = 0.242) compared to that of LFG; 0.2 vs. 0.7. Higher (p ≤ 0.001) intestinal Lactobacillus counts were detected in chickens of LTG. Decreased (p ≤ 0.001) IL-1ß and CXCL8 values were reported in LTG. The cellular immune modulation showed higher (p ≤ 0.001) opsonic activity (MΦ and phagocytic index) in LTG vs. LFG at 25 and 35 days. Also, higher (p ≤ 0.001) local, IgA, and humoral, HI titers, for both Newcastle, and avian influenza H5 viruses were found in LTG compared to LFG. In conclusion, microbial lysozyme could improve feed efficiency, intestinal integrity, Lactobacillus counts, anti-inflammatory, and immune responses in broiler chickens.


Exogenous aqueous and spray microbial lysozyme enhanced growth in commercial broiler chickensThe postbiotic effects of microbial lysozyme modulated intestinal integrity.Anti-inflammatory, as well as local, cellular, and humoral immune response were stimulated by lysozyme supplementation.


Subject(s)
Chickens , Muramidase , Animals , Chickens/physiology , Muramidase/pharmacology , Dietary Supplements , Lactobacillus , Immunity , Anti-Inflammatory Agents/pharmacology , Animal Feed/analysis , Diet/veterinary
2.
BMC Vet Res ; 20(1): 28, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245745

ABSTRACT

BACKGROUND: Attempts to use dietary lysozyme (LYZ) as an alternative to antibiotics in broilers have been successful, but further research is needed for effective use. Here, we compared the differences between LYZ and avilamycin (AVI) feed additives for growth performance, gut health and immunity of broilers. One-day old, one hundred and twenty broiler chicks (Ross 308) were randomly allocated into three groups consisting forty birds in each group. Standard diet without supplementation was applied as the control group (I), while the chicks of the other groups were supplemented with 100 mg of AVI per kg diet (AVI, group II), and 90 mg LYZ per kg diet (LYZ, group III) for five consecutive weeks. RESULTS: Body weight, feed conversion ratio, body weight gain, and European production efficiency factor were markedly (p < 0.05) increased in both AVI and LYZ groups in relation to CON group, but the feed intake and protein efficiency ratio were not affected. Both AVI and LYZ significantly (p < 0.001) upregulated the mRNA expression of ileal interleukin-18 (IL-18), interferon-gamma (IFN-γ), and interleukin-10 (IL-10), interleukin-2 (IL-2), and glutathione peroxidase (GSH-PX) genes compared to CON group. However, IL-2, IL-10, IL-18, and GSH-PX genes were markedly (p < 0.01) upregulated in LYZ compared to the AVI group. LYZ treated group had a significant increase (p < 0.05) in the serological haemagglutination inhibition titers of H5N1 vaccination and a significant decrease (p < 0.0001) in coliform counts compared to control and AVI groups, but all growth parameters were nearly similar between AVI and LYZ groups. The VH and VH/CD were markedly higher in LYZ than AVI and control groups. CONCLUSION: Exogenous dietary lysozyme supplementation by a dose of 90 mg/kg broilers' diet induced better effects on intestinal integrity, fecal bacterial counts, immune response, and growth performance which were comparable to avilamycin. Therefore, dietary lysozyme could safely replace avilamycin in the broiler chickens' diet. However, further experimental studies regarding the use of lysozyme in commercial broilers, both in vitro and in vivo, targeting more communities of intestinal microbiome and explaining more details about its beneficial effects need to be conducted.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype , Oligosaccharides , Animals , Interleukin-2 , Interleukin-10 , Interleukin-18 , Muramidase , Diet/veterinary , Dietary Supplements , Body Weight , Animal Feed/analysis
3.
Curr Top Med Chem ; 21(12): 1014-1026, 2021.
Article in English | MEDLINE | ID: mdl-33845744

ABSTRACT

Cancer notably carcinoma represents a prominent health challenge worldwide. A variety of chemotherapeutic agents are being used to deal with a variety of carcinomas. However, these delivering agents not only enter the targeted site but also affect normal tissues yielding poor therapeutic outcomes. Chemotherapeutic-associated problems are being attributed to drug non-specificity resulting from poor drug delivery systems. These problems are now being solved using nanomedicine, which entails using nanoparticles as drug delivery systems or nanocarriers. This nanoparticle-based drug delivery system enhances clinical outcomes by enabling targeted delivery, improving drug internalization, enhanced permeability, easy biodistribution, prolonged circulation and enhanced permeability rate, thereby improving the therapeutic effectiveness of several anticancer agents. Natural Protein-based Nanoparticles (PNPs) such as ferritin, lipoprotein, and lectins from natural sources have gained extensive importance at a scientific community level as nanovehicle for effective drug delivery and photo acoustic labeling replacing several synthetic nanocarriers that have shown limited therapeutic outcomes. The bioavailability of PNP, the chance of genetic engineering techniques to modify their biological properties made them one of the important raw material sources for drug delivery research. This current review highlighted different chemotherapeutic agents used in the treatment of some carcinomas. It also focused on the wide variety of natural protein sources derived nanoparticles (NPs) as anticancer delivery of agents for cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Biological Products/chemistry , Ferritins/chemistry , Lectins/chemistry , Lipoproteins/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Drug Delivery Systems , Humans
4.
Anim Biotechnol ; 32(1): 51-66, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31443628

ABSTRACT

Providing essential amounts of balanced nutrients is one of the most vital aspects of livestock production. Among nutrients, protein has an essential role in many physiological functions of animals. Amino acids in needs for both high and medium yielding ruminant animals are not fully covered by microbial degraded feed sources in the rumen of animals, and they must be met by protecting the proteins from being broken down in the rumen; hence, the dietary supplementation of rumen-protected proteins (RPP), including mainly rumen-protected methionine (RPM), became imperative. Many researchers are interested in studying the role of (RPM) in ruminant animals concerning its effect on milk yield, growth performance, digestibility, dry matter intake and nitrogen utilization efficiency. Unfortunately, results obtained from several investigations regarding RPM indicated great fluctuation between its useful and useless effects in ruminant nutrition particularly during early and late lactation period; therefore, this review article may be helpful for ruminant farm owners when they decide to supplement RPM in animal's diet. Conclusively, supplementation of RPM often has a balanced positive influence, without any reported negative impact on milk yield, growth performance and blood parameters especially in early lactating ruminant animals and when used with the low crude protein diet.


Subject(s)
Cattle/physiology , Methionine , Reproduction/drug effects , Rumen/physiology , Sheep/physiology , Animal Feed , Animals , Dietary Supplements , Female , Methionine/administration & dosage , Methionine/chemistry , Methionine/pharmacology , Nitrogen/metabolism
5.
Poult Sci ; 99(2): 801-811, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32029162

ABSTRACT

Guduchi (Tinospora cordifolia) is a well-recognized and widely distributed traditional plant that is used successfully in Indian Ayurveda medicine. T. cordifolia has shown many promising biological activities, such as antioxidative, antimicrobial, antihyperglycemic, anti-inflammatory, osteoprotective, hepatoprotective, antidiarrheal, and antistress effects. Guduchi is a rich source of protein and micronutrients, such as iron, zinc, copper, calcium, phosphorus, and manganese. It also contains many secondary plant metabolites, such as terpenes, alkaloids, flavonoids, steroids, and glycosides. Based on previous studies in poultry, the supplementation levels of Guduchi range from 1 to 5 g/kg of diet (different sources, such as powder, extracts, roots, and leaves, have been used). It was suggested that this variation in supplementation levels depends on different factors, including the extraction method, the supplementation proposed, the method of supplementation (either in feed or drinking water), and the species and physiological status of the birds. Generally, dietary supplementation of poultry broilers with T. cordifolia yielded positive impacts on growth performance, body gains (increased by 4.8%), dressing percentage (increased by 7.1%), meat quality traits, and the shelf life of the meat. In addition, T. cordifolia exerted a palliative effect on the general health status of the birds through reducing live enzymes and plasma uric acids and enhancing the immune response, as indicated by the leukocyte count, hemagglutinin titer, interleukin activity, and mortality levels. Further investigations concluded that T. cordifolia showed strong antimicrobial effects against Escherichia coli and Salmonella enteritidis, with subsequent reductions in mortality. Moreover, T. cordifolia showed an ability to improve humoral and cell-mediated immunity against Newcastle disease, infectious anemia, gout, and aflatoxicosis. The current review discusses many beneficial properties of T. cordifolia, although the lack of pharmacological trials limits the use of this extract in poultry. Further research should be performed regarding the composition of the active compound, the possible mechanisms of action, and the effective doses to fully understand the activities and benefits of T. cordifolia as a growth performance improvement supplement.


Subject(s)
Chickens/metabolism , Ducks/metabolism , Nutritional Physiological Phenomena , Plant Extracts/metabolism , Tinospora/chemistry , Turkeys/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Humans , Medicine, Ayurvedic , Plant Extracts/administration & dosage , Random Allocation
6.
PLoS One ; 13(5): e0198085, 2018.
Article in English | MEDLINE | ID: mdl-29847558

ABSTRACT

Diminishing the cost of broiler chicken diet is a critical issue in the poultry industry. Numerous studies were performed to achieve this pivotal objective by diet supplementation with alternative feed additives. In the current study, low-energy broiler rations were supplemented with different commercial multienzyme formulations to minimize the cost, and increase the digestibility and absorption of the digested macronutrients. Cobb Avian 48 broiler chicks (mixed sex, 1-d-old, n = 3120) were randomly allocated into six groups, and each group was subdivided into four replicates (130 birds per replicate). The birds were randomly allocated into a control group fed basal diet (CB); control group fed low-energy diet (CL); and birds fed low-energy diets supplemented with different enzyme formulations. The enzyme formulations used were Xylam 500® (CLX group), Hemicell® (CLH group), Avizyme® (CLA group), and Megazyme® (CLM group,) following the doses recommended by the manufacturers. The growth performance of CLA and CLH group birds was significantly improved when compared with CL. In comparison with CB, Avizyme® significantly (p < 0.001) increased the intestinal PEPT1, GLUT2, ACC, and IL-2 expression; PEPT1 facilitates the absorption of micronutrients. In conclusion, exogenous multienzyme complexes may be included in the low-energy diet to enhance the performance of broiler chickens (Avizyme® ˃ Hemicell® ˃ Megazyme®), and reduce the diet cost by up-regulating the expression of intestinal nutrient transporter genes, and improving the immunity and serum biochemical parameters of broiler chickens.


Subject(s)
Caloric Restriction , Chickens/growth & development , Enzymes/chemistry , Enzymes/pharmacology , Intestinal Mucosa/metabolism , Intestines/drug effects , Membrane Transport Proteins/genetics , Animal Feed , Animals , Drug Compounding , Gene Expression Regulation/drug effects
7.
Article in English | MEDLINE | ID: mdl-29473532

ABSTRACT

BACKGROUND: Punica granatum L. (pomegranate), is a shrub mostly available in the Mediterranean Sea region. The fruits have gained the substantial attention among researchers due to their promising biological activities including anti-inflammatory, antibacterial, antidiarrheal, immune modulatory, antitumor, wound healing and antifungal that have been attributed to various constituents of seeds, bark, juice, pericarp, and leaf of this tree across the globe. The phenolic compounds of pomegranate have been documented to possess numbers of prophylactic and therapeutic utilities against various pathological infections as well as non-infectious disorders. OBJECTIVE: The current review expedites the pharmacological role of Punica granatum L. in curing elements related to infectious and non-infectious disorders. METHODS: The current review is based on literature and patents already available on various scientific databases highlighting the role of Punica granatum along with its therapeutic potentials against infectious and non-infectious disorders. The databases included under study were PubMed, Med line, PubMed Central, Science Direct and few other scientific databases. The information obtained through these diverse databases is compiled, critically interpreted and presented in the current study. RESULTS: Multi-dimensional beneficial application of pomegranate plant is recorded. The pomegranate seed oil has phytoestrogenic compounds and the fruit is rich in phenolic compounds with strong antioxidant activity. The fruit and bark of pomegranate are used against intestinal parasites, dysentery, and diarrhea in different animals and human models. Since the ancient time the juice and seeds had considered the best therapy for throat and heart disorders. Ellagic acid is one of the main components of pomegranate with potent antioxidant activity. Results from different studies reported that Punica granatum L or its byproducts can be used as natural food additives in human and animal nutrition in order to boost immunity, microbial safety and provide the housing environment without affecting body weight gain. In addition, Punica granatum L. byproducts can modulate immune function and gut microbiota of broiler chickens as well as reduce the odorous gas emissions from excreta. Naturally occurring polyphenols in a pomegranate can be a potential alternative medicine for the prevention of avian Colibacillosis diseases and can also be used as an intestine astringent to relieve diarrhea and enteritis in chickens. CONCLUSION: The present review gives the insight towards major components of pomegranate as well as their pharmacological activities against pathological disorders. In spite of many beneficial properties of Punica granatum L., more research evidence on a molecular basis is needed to find out the molecular mechanism of action in various animals and human models to validate the usefulness of Punica granatum L. as a potent therapeutic agent.


Subject(s)
Functional Food , Lythraceae , Plant Extracts/pharmacology , Animals , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Drug Development , Humans , Immunologic Factors/pharmacology , Lythraceae/chemistry , Phytochemicals/analysis , Phytotherapy , Plant Extracts/therapeutic use , Plant Oils/analysis , Plant Oils/pharmacology
8.
Environ Sci Pollut Res Int ; 25(1): 181-190, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29116537

ABSTRACT

Protein quality plays a key role than quantity in growth, production, and reproduction of ruminants. Application of high concentration of dietary crude protein (CP) did not balance the proportion of these limiting amino acids (AA) at duodenal digesta of high producing dairy cow. Thus, dietary supplementation of rumen-protected AA is recommended to sustain the physiological, productive, and reproductive performance of ruminants. Poor metabolism of high CP diets in rumen excretes excessive nitrogen (N) through urine and feces in the environment. This excretion is usually in the form of nitrous oxide, nitric oxide, nitrate, and ammonia. In addition to producing gases like methane, hydrogen carbon dioxide pollutes and has a potentially negative impact on air, soil, and water quality. Data specify that supplementation of top-limiting AA methionine and lysine (Met + Lys) in ruminants' ration is one of the best approaches to enhance the utilization of feed protein and alleviate negative biohazards of CP in ruminants' ration. In conclusion, many in vivo and in vitro studies were reviewed and reported that low dietary CP with supplemental rumen-protected AA (Met + Lys) showed a good ability to reduce N losses or NH3. Also, it helps in declining gases emission and decreasing soil or water contamination without negative impacts on animal performance. Finally, further studies are needed on genetic and molecular basis to explain the impact of Met + Lys supplementation on co-occurrence patterns of microbiome of rumen which shine new light on bacteria, methanogen, and protozoal interaction in ruminants.


Subject(s)
Amino Acids/metabolism , Animal Feed/standards , Animal Nutritional Physiological Phenomena , Dietary Proteins/metabolism , Environmental Pollutants/analysis , Ruminants/metabolism , Animals , Ecosystem , Feces/chemistry , Methane/analysis , Nitrogen/urine , Rumen/metabolism
9.
Biol Trace Elem Res ; 184(2): 456-462, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29081062

ABSTRACT

The objective of this study was to evaluate the effectiveness of dietary zinc oxide (ZnO) and zinc methionine (Zn-Met) supplementation on layer performance, quality of egg, some blood constituents, and oxidative status in blood of laying hens. A total of 120 laying hens (Hisex Brown) 22-week-old were indiscriminately allotted into five groups of 24 hens with six replications (four birds/replicate). A complete randomized design experiment was performed including control (basal diet), two levels of ZnO (50 and 100 mg/kg basal diet), and two levels of Zn-Met (50 and 100 mg/kg basal diet) through 22 to 34 weeks of age. Supplementation of 100 mg of Zn-Met significantly (P = 0.001) increased feed intake compared to other treatment groups. The groups supplemented with 50 mg of ZnO and 100 mg of Zn-Met reported the significantly higher egg production rate (P = 0.002) and egg mass (P < 0.001) compared to other treated groups. All traits of egg quality were not statistically (P < 0.05 or 0.01) affected by ZnO or Zn-Met supplementation except shell thickness, Haugh unit score, and yolk to albumin ratio. Dietary supplementation of either ZnO or Zn-Met did not affect the oxidative parameters in serum except the activity of Cu-Zn-SOD. Serum triglyceride, total cholesterol, and LDL cholesterol (low-density lipoprotein) were significantly (P < 0.05) affected by Zn supplementation, while HDL cholesterol (high-density lipoprotein) did not affect. Compared to the control group, supplementation of ZnO or Zn-Met increased serum content of zinc with no differences among supplemental zinc doses. It could be concluded that dietary inorganic (ZnO) and organic (Zn-Met) supplemented up to 50 and 100 mg/kg, respectively, can be used as effective supplements to improve productivity of laying hens, serum zinc level, lipid profile (triglyceride and LDL cholesterol), and activity of Cu-Zn-SOD.


Subject(s)
Dietary Supplements , Egg Shell/drug effects , Eggs/standards , Methionine/analogs & derivatives , Organometallic Compounds/pharmacology , Zinc Oxide/pharmacology , Animal Feed/analysis , Animals , Chickens/blood , Cholesterol/blood , Cholesterol, LDL/blood , Eggs/analysis , Female , Methionine/administration & dosage , Methionine/pharmacology , Organometallic Compounds/administration & dosage , Triglycerides/blood , Zinc Oxide/administration & dosage
10.
AMB Express ; 7(1): 214, 2017 Nov 25.
Article in English | MEDLINE | ID: mdl-29178045

ABSTRACT

During the transition period, fatty liver syndrome may be caused in cows undergo negative energy balance, ketosis or hypocalcemia, retained placenta or mastitis problems. During the transition stage, movement of non-esterified fatty acids (NEFA) increases into blood which declines the hepatic metabolism or reproduction and consequently, lactation performance of dairy cows deteriorates. Most of studies documented that, choline is an essential nutrient which plays a key role to decrease fatty liver, NEFA proportion, improve synthesis of phosphatidylcholine, maintain lactation or physiological function and work as anti-oxidant in the transition period of dairy cows. Also, it has a role in the regulation of homocysteine absorption through betaine metabolite which significantly improves plasma α-tocopherol and interaction among choline, methionine and vitamin E. Many studies reported that, supplementation of rumen protected form of choline during transition time is a sustainable method as rumen protected choline (RPC) perform diverse functions like, increase glucose level or energy balance, fertility or milk production, methyl group metabolism, or signaling of cell methionine expansion or methylation reactions, neurotransmitter synthesis or betaine methylation, increase transport of lipids or lipoproteins efficiency and reduce NEFA or triacylglycerol, clinical or sub clinical mastitis and general morbidity in the transition dairy cows. The purpose of this review is that to elucidate the choline importance and functions in the transition period of dairy cows and deal all morbidity during transition or lactation period. Furthermore, further work is needed to conduct more studies on RPC requirements in dairy cows ration under different feeding conditions and also to elucidate the genetic and molecular mechanisms of choline in ruminants industry.

SELECTION OF CITATIONS
SEARCH DETAIL