Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Trop Med Infect Dis ; 8(5)2023 May 14.
Article in English | MEDLINE | ID: mdl-37235323

ABSTRACT

With more than 12 million cases worldwide, leishmaniasis is one of the top 10 neglected tropical diseases. According to the WHO, there are approximately 2 million new cases each year in foci in around 90 countries, of which 1.5 million are cutaneous leishmaniasis (CL). Cutaneous leishmaniasis (CL) is a complex cutaneous condition that is caused by a variety of Leishmania species, including L. (Leishmania) major, L. (L) tropica, L. (L) aethiopica, L. (L) mexicana, L. (Viannia) braziliensis, and L. (L) amazonensis. The disease imposes a significant burden on those who are affected since it typically results in disfiguring scars and extreme social stigma. There are no vaccines or preventive treatments available, and chemotherapeutic medications, including antimonials, amphotericin B, miltefosine, paromomycin, pentamidine, and antifungal medications, have a high price tag, a significant risk of developing drug resistance, and a variety of systemic toxicities. To work around these limitations, researchers are continuously looking for brand-new medications and other forms of therapy. To avoid toxicity with systemic medication use, high cure rates have been observed using local therapy techniques such as cryotherapy, photodynamic therapy, and thermotherapy, in addition to some forms of traditional therapies, including leech and cauterization therapies. These CL therapeutic strategies are emphasized and assessed in this review to help with the process of locating the appropriate species-specific medicines with fewer side effects, lower costs, and elevated cure rates.

2.
Fitoterapia ; 164: 105360, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36423882

ABSTRACT

An ellagitannin monomer, lythracin M (1), and a dimer, lythracin D (2), along with eight known monomers (3-10) were isolated from Lawsonia inermis (Lythraceae) leaves. Lythracin M (1) is a C-glycosidic ellagitannin with a flavogallonyl dilactone moiety that participates in the creation of a γ-lactone ring with the anomeric carbon of the glucose core. Lythracin D (2) was determined as an atropisomer of the reported lythcarin D. These newly discovered structures (1 and 2) were determined by intensive spectroscopic experiments and by comparing DFT-calculated 1H1H coupling, 1H NMR chemical shifts, and ECD data with experimental values. The anti-acetylcholinesterase assay of the compounds 1-10 revealed that the C-1 ellagitannin epimers [casuarinin (7; IC50 = 34 ± 2 nM) and stachyurin (8; IC50 = 56 ± 3 nM)], and the new dimer (2; IC50 = 61 ± 4 nM) possess enzyme inhibitory effects comparable to the reference drug (donepezil, IC50 = 44 ± 3 nM). Molecular docking of compounds 1-10 with AChE identified the free galloyl moiety as an important pharmacophore in the anticholinesterase activity of tannins.


Subject(s)
Hydrolyzable Tannins , Lawsonia Plant , Lawsonia Plant/chemistry , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Density Functional Theory , Molecular Structure
3.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35215329

ABSTRACT

The application of plant extracts or plant-derived compounds in the green synthesis of metal nanoparticles (NPs) was researched. Determining the exact metabolite implicated in the formation of NPs would necessitate comprehensive investigations. Copper nanoparticles (CuNPs) are gaining a lot of attention because of their unique properties and effectiveness against a wide range of bacteria and fungi, as well as their potential for usage in catalytic, optical, electrical, and microelectronics applications. In the course of this study, we aimed to formulate CuNPs utilizing pure tamarixinin A (TA) ellagitannin isolated from Tamarix aphylla galls. The main particle size of the formed CuNPs was 44 ± 1.7 nm with zeta potential equal to -23.7 mV, which emphasize the stability of the CuNPs. The X-ray diffraction spectroscopy showed a typical centered cubic crystalline structure phase of copper. Scanning electron microscopy images were found to be relatively spherical and homogeneous in shape. The antimicrobial properties of TA, as well as its mediated CuNPs, have been evaluated through well diffusion assays against four bacterial, Bacillus subtilis NCTC 10400, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853, and two fungal, Candida albicans and Aspergillus flavus, strains. The distinctive antimicrobial activities were noted against the fungal strains and the Gram-negative bacterial strains P. aeruginosa ATCC 27853, and E. coli ATCC 25922. In conclusion, CuNPs mediated by TA can be applied for combating a wide range of bacterial and fungal species especially C. albicans, Asp. flavus, and P. aeruginosa in a variety of fields.

SELECTION OF CITATIONS
SEARCH DETAIL