Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Sci Pollut Res Int ; 31(20): 29264-29279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573576

ABSTRACT

Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.


Subject(s)
Copper , Lead , Metals, Heavy , Soybean Oil , Sulfides , Water Pollutants, Chemical , Adsorption , Lead/chemistry , Soybean Oil/chemistry , Copper/chemistry , Sulfides/chemistry , Porosity , Water Pollutants, Chemical/chemistry , Metals, Heavy/chemistry , Chromium/chemistry , Kinetics , Hydrogen-Ion Concentration
2.
Environ Sci Pollut Res Int ; 31(11): 16940-16957, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326685

ABSTRACT

The applications of polysulfides derived from natural plant oil and sulfur via the inverse vulcanization in the removal of heavy metals from aqueous solutions suffered from their low porosity and scarce surface functionality because of their hydrophobic surfaces and bulk characteristics. In this study, polysulfides from sulfur and palm oil (PSPs) with significantly enhanced porosity (13.7-24.1 m2/g) and surface oxygen-containing functional groups (6.9-8.6 wt.%) were synthesized with the optimization of process conditions including reaction time, temperature, and mass ratios of sulfur/palm oil/NaCl/sodium citrate. PSPs were applied as sorbents to remove heavy metals present in aqueous solutions. The integration of porosity and oxygen modification allowed a fast kinetic (4.0 h) and enhanced maximum sorption capacities for Pb(II) (218.5 mg/g), Cu(II) (74.8 mg/g), and Cr(III) (68.4 mg/g) at pH 5.0 and T 298 K comparing with polysulfides made without NaCl/sodium citrate. The sorption behaviors of Pb(II), Cu(II), and Cr(III) on PSPs were highly dependent on the solution pH values and ionic strength. The sorption presented excellent anti-interference capability for the coexisting cations and anions. The sorption processes were endothermic and spontaneous. This work would guide the preparation of porous polysulfides with surface modification as efficient sorbents to remediate heavy metals from aqueous solutions.


Subject(s)
Metals, Heavy , Sulfides , Water Pollutants, Chemical , Porosity , Sodium Chloride , Lead , Palm Oil , Sodium Citrate , Metals, Heavy/chemistry , Water , Sulfur , Adsorption , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/chemistry
3.
J Oleo Sci ; 63(5): 497-506, 2014.
Article in English | MEDLINE | ID: mdl-24717547

ABSTRACT

The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.


Subject(s)
Esters/chemical synthesis , Hexanols/chemistry , Industry , Oil and Gas Fields , Plant Oils/chemistry , Chemical Phenomena , Emulsions , Esterification , Gels , Palm Oil , Time Factors , Vacuum , Viscosity
4.
Biotechnol Prog ; 30(4): 797-805, 2014.
Article in English | MEDLINE | ID: mdl-24692323

ABSTRACT

In this work, crude oil biodegradation has been optimized in a solid-liquid two phase partitioning bioreactor (TPPB) by applying a response surface methodology based d-optimal design. Three key factors including phase ratio, substrate concentration in solid organic phase, and sodium chloride concentration in aqueous phase were taken as independent variables, while the efficiency of the biodegradation of absorbed crude oil on polymer beads was considered to be the dependent variable. Commercial thermoplastic polyurethane (Desmopan®) was used as the solid phase in the TPPB. The designed experiments were carried out batch wise using a mixed acclimatized bacterial consortium. Optimum combinations of key factors with a statistically significant cubic model were used to maximize biodegradation in the TPPB. The validity of the model was successfully verified by the good agreement between the model-predicted and experimental results. When applying the optimum parameters, gas chromatography-mass spectrometry showed a significant reduction in n-alkanes and low molecular weight polycyclic aromatic hydrocarbons. This consequently highlights the practical applicability of TPPB in crude oil biodegradation.


Subject(s)
Biodegradation, Environmental , Petroleum , Polycyclic Aromatic Hydrocarbons/chemistry , Polymers/chemistry , Biofilms , Bioreactors , Gas Chromatography-Mass Spectrometry , Phase Transition
5.
Bioresour Technol ; 101(18): 6942-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20434905

ABSTRACT

Oil and gas field wastewater or produced water is a significant waste stream in the oil and gas industries. In this study, the performance of a membrane sequencing batch reactor (MSBR) and membrane sequencing batch reactor/reverse osmosis (MSBR/RO) process treating produced wastewater were investigated and compared. The MSBR was operated in different hydraulic residence time (HRT) of 8, 20 and 44 h. Operation results showed that for a HRT of 20 h, the combined process effluent chemical oxygen demand (COD), total organic carbon (TOC) and oil and grease (O&G) removal efficiencies were 90.9%, 92% and 91.5%, respectively. The MSBR effluent concentration levels met the required standard for oil well re-injection. The RO treatment reduced the salt and organic contents to acceptable levels for irrigation and different industrial re-use. Foulant biopsy demonstrated that the fouling on the membrane surface was mainly due to inorganic (salts) and organic (microorganisms and their products, hydrocarbon constituents) matters.


Subject(s)
Bioreactors , Conservation of Natural Resources/methods , Membranes, Artificial , Petroleum/microbiology , Water Microbiology , Water Purification/instrumentation , Biodegradation, Environmental , Equipment Design , Equipment Failure Analysis
6.
J Hazard Mater ; 170(2-3): 530-51, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19505758

ABSTRACT

Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.


Subject(s)
Industrial Waste/analysis , Industry , Petroleum , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Gases , Minerals/chemistry , Refuse Disposal , Seawater , Technology , Waste Disposal, Fluid/economics
SELECTION OF CITATIONS
SEARCH DETAIL