Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Mar Pollut Bull ; 189: 114675, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36827769

ABSTRACT

The lethal and histopathological impacts of crude oil's Water-Soluble Fraction (WSF) on the liver and kidney tissues of juvenile Rutilus frisii were investigated. The LC50 96 h of WSF was calculated at 33.95 ppm. Fish exposed to two concentrations (0.1 LC50 and LC50) of WSF and control for 24 and 96 h were used for histopathological studies. Tissues in the control group and 0.1 LC50-24 h were healthy, and no specific damages were observed. With increasing exposure time (96 h) and concentration (LC50), damages' type, frequency, and intensity gradually increased. Cloudy swelling, loss of cell boundary, nuclei deformation, and congestion of blood vessels were found in the liver, enlarged glomeruli, reduced Bowman's space, and occlusion of the tubular lumen, were found in the kidney. It is demonstrated that the WSF of crude oil can cause severe damage to the tissues of juvenile Kutum, depending on the exposure concentration.


Subject(s)
Cyprinidae , Petroleum , Water Pollutants, Chemical , Animals , Water , Petroleum/toxicity , Liver/chemistry , Kidney/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
2.
Fish Shellfish Immunol ; 120: 737-744, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34923114

ABSTRACT

The aim of this study was to examine the combined effects of thyme essential oil (TEO) and prebiotic (Immunogen ®) on growth performance, hematological parameters, innate immunity, and oxidative status of rainbow trout, Oncorhynchus mykiss. For this purpose, the fish (11.92 ± 0.06 g) were fed (3% of biomass) experimental diets that contained 0 (Control; without Immunogen and/or TEO); 1% TEO + 0.1% Immunogen (T1); 1% TEO + 0.2% Immunogen (T2); 2% TEO + 0.1% Immunogen (T3) and 2% TEO + 0.2% Immunogen (T4) for 60 days. According to results, all experimental treatments exhibited similar final weight, weight gain, specific growth rate (SGR), and survival rate (SR), which were significantly higher than those of the control treatment. Although all treatments reduced the feed conversion ratio (FCR) compared to the control group, the lowest value was observed in T4. All experimental treatments showed a significant increase in amylase and protease activity compared to the control group. Moreover, the fish fed on T4 and T1 diets showed the highest and lowest lipase activity. Dietary TEO and Immunogen supplementations significantly increased WBC count and Hb level compared to the control group. Fish fed on control and T2 diets displayed lower hematocrit than fish fed on other experimental diets. The highest and lowest MCH index were recorded in T3 and control groups, respectively. The fish fed diets supplemented with T3 diet presented significantly higher MCV index compared to the control and T2 treatment. All experimental treatments exhibited similar AST, and ALP activities, which were significantly lower than those of the control group. Also, the lowest ALT activity was observed in T2 and T4 treatments compared to other groups. Dietary TEO and Immunogen supplementations significantly enhanced skin mucus total Ig, total protein level, and ACH50, protease, and lysozyme. All experimental treatments exhibited enhanced intestine total Ig, ACH50, and lysozyme level. Dietary thyme essential oil and Immunogen supplementations significantly enhanced liver antioxidant parameters including catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD) and decreased MDA production compared to fish fed on control diet. As a result, it can be suggested that the combination of thyme essential oil and Immunogen (specially 2% TEO + 0.2% Immunogen) is useful for enhancing the yield and well-being of farmed rainbow trout.


Subject(s)
Diet , Oils, Volatile , Oncorhynchus mykiss , Prebiotics , Thymus Plant , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Disease Resistance , Muramidase , Oils, Volatile/pharmacology , Oncorhynchus mykiss/growth & development , Peptide Hydrolases , Thymus Plant/chemistry
3.
Aquat Toxicol ; 170: 330-334, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26377481

ABSTRACT

The water soluble fraction (WSF) of crude oil is a complex and toxic mixture of hydrocarbons that aquatic organisms directly encounter in oil spills. WSF plays an important role in the toxicity of crude oil to aquatic organisms. In the present study, the effects of WSF on juvenile Caspian roach, Rutilus caspicus, at lethal and sub-lethal level was investigated. The lethality of WSF on R. caspicus was studied by conducting 96h LC50 tests with semi-static exposure methods with 6 and 24h solution renewals. The 96h LC50 of WSF was estimated at 62.5% and 35.9% WSF concentrations for 24h and 6h renewal methods, respectively. To investigate the sub-lethal effect of WSF on R. caspicus, fish were exposed to 62.5, 31.3, and 6.3% concentrations of WSF for 24h and changes in their respiration rate and swimming activity was monitored during the exposure. At the end of the exposure period, four hematologic parameters [O2 and CO2 pressures (pO2 and pCO2), hematocrit, and hemoglobin content] of the fish were measured. The result of the behavioural experiment revealed that all three studied concentrations of WSF elevated the respiration rate and reduced the swimming activity of R. caspicus. No significant changes were detected in the hematocrit and hemoglobin content of the fish blood, but the blood pO2 of the fish exposed to 62.5% WSF decreased while the blood pCO2 increased. The results of this study suggest that the egression of the volatile components in hydrocarbon mixtures during conventional semi-static toxicity tests may lead to underestimating the toxicity of the hydrocarbons. The results of the sub-lethal experiments propose that failure of the respiratory system that leads to asphyxia may be a major mechanism that results in lethal effect of WSF in high concentrations.


Subject(s)
Cyprinidae/physiology , Petroleum/analysis , Water/chemistry , Animals , Behavior, Animal/drug effects , Cyprinidae/growth & development , Hemoglobins/analysis , Hydrocarbons/chemistry , Hydrocarbons/toxicity , Lethal Dose 50 , Oxygen Consumption , Respiratory Rate/drug effects , Swimming , Toxicity Tests
4.
Environ Toxicol Chem ; 34(8): 1826-32, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25904082

ABSTRACT

The water-soluble fraction of crude oil is a complex and toxic mixture of hydrocarbons. Because aquatic organisms directly encounter it, the water-soluble fraction plays an important role in the toxicity of crude oil in aquatic environments. To determine whether fish are attracted to or avoid the water-soluble fraction, Caspian roaches (Rutilus caspicus) were exposed to different concentrations of the water-soluble fraction in a choice maze apparatus. The results showed that Caspian roaches can detect and avoid 2 mg/L of the water-soluble fraction. To study the effect of the water-soluble fraction on the olfactory function of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction for 96 h; afterward, exposed fish encountered food extract in a choice maze apparatus. The present study showed that the water-soluble fraction significantly impairs the olfactory function of roaches. To investigate the effect of olfactory system dysfunction on the feeding behavior of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction. After 4 d, 8 d, and 12 d of exposure, the feeding behavior toward the food extract was tested. The results showed that both 3.2 mg/L and 16 mg/L of the water-soluble fraction suppress the feeding behavior of Caspian roaches. The present study demonstrates that sublethal concentrations of crude oil's water-soluble fraction impair the olfactory function of fish and consequently suppress the feeding behavior.


Subject(s)
Cyprinidae/physiology , Feeding Behavior/drug effects , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Water/chemistry , Animals , Hydrocarbons/analysis , Hydrocarbons/chemistry , Petroleum/analysis , Video Recording , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL