Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Drug Deliv ; 28(1): 2229-2240, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34668818

ABSTRACT

Fungal infections of the paranasal cavity are among the most widely spread illnesses nowadays. The aim of the current study was to estimate the effectiveness of an in situ gel loaded with voriconazole‒clove oil nano-transferosomes (VRC-CO-NT) in enhancing the activity of voriconazole against Aspergillus flavus, which causes rhinosinusitis. The nephrotoxic side effects of voriconazole may be reduced through the incorporation of the clove oil, which has antioxidant activity that protects tissue. The Box‒Behnken design was applied to formulate the VRC-CO-NT. The particle size, entrapment efficiency, antifungal inhibition zone, and serum creatinine concentration were considered dependent variables, and the soybean lecithin, VRC, and CO concentrations were considered independent ones. The final optimized formulation was loaded into a deacetylated gellan gum base and evaluated for its gelation, rheological properties, drug release profile, permeation capabilities, and in vivo nephrotoxicity. The optimum formulation was determined to be composed of 50 mg/mL lecithin, 18 mg/mL VRC, and 75 mg/mL CO, with a minimum particle size of 102.96 nm, an entrapment efficiency of 71.70%, an inhibition zone of 21.76 mm, and a serum creatinine level of 0.119 mmol/L. The optimized loaded in situ gel released 82.5% VRC after 12 hours and resulted in a 5.4-fold increase in drug permeation. The in vivo results obtained using rabbits resulted in a nonsignificant differentiation among the renal function parameters compared with the negative control group. In conclusion, nasal in situ gel loaded with VRC-CO-NT is considered an efficient novel carrier with enhanced antifungal properties with no signs of nephrotoxicity.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus flavus/drug effects , Clove Oil/pharmacology , Nanoparticles/chemistry , Voriconazole/pharmacology , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/adverse effects , Antifungal Agents/pharmacokinetics , Bacterial Outer Membrane Proteins , Biomarkers , Chemistry, Pharmaceutical , Clove Oil/administration & dosage , Creatinine/blood , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Liberation , Gels/chemistry , Kidney Diseases/chemically induced , Liposomes/chemistry , Paranasal Sinuses/metabolism , Particle Size , Rabbits , Rheology , Voriconazole/administration & dosage , Voriconazole/adverse effects , Voriconazole/pharmacokinetics
2.
Drug Deliv ; 28(1): 1043-1054, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34060397

ABSTRACT

Herpes labialis, caused by herpes simplex virus type 1, is usually characterized by painful skin or mucosal lesions. Penciclovir (PV) tablets are found to be effective against herpes labialis but suffer from poor oral bioavailability. This study aimed to combine the benefits of PV and lavender oil (LO), which exhibits anesthetic activity, in the form of a self-nanoemulsifying drug delivery system (SNEDDS) for the treatment of herpes labialis. Toward this purpose, LO (oil), Labrasol:Labrafil M1944 CS in the ratio of 6:4 (surfactant mixture), and Lauroglycol-FCC (co-surfactant, selected based on the solubility of PV) were evaluated as the independent factors using a distance quadratic mixture design. The formulation was optimized for the minimum globule size and maximum stability index and was determined to contain 14% LO, 40.5% Labrasol:Labrafil 1944 (6:4), and 45.5% Lauroglycol-FCC. The optimized PV-LO-SNEDDS was embedded in chitosan hydrogel and the resulting formulations coded by (O3) were prepared and evaluated. The rheological studies demonstrated a combined pseudoplastic and thixotropic behavior with the highest flux of PV permeation across sheep buccal mucosa. Compared to a marketed 1% PV cream, the O3 formulation exhibited a significantly higher and sustained PV release, nearly twice the PV permeability, and a relative bioavailability of 180%. Overall, results confirm that the O3 formulation can provide an efficient delivery system for PV to reach oral mucosa and subsequent prolonged PV release. Thus, the PV-LO-SNEDDS embedded oral gel is promising and can be further evaluated in clinical settings to establish its therapeutic use in herpes labialis.


Subject(s)
Guanine/pharmacology , Herpes Labialis/drug therapy , Nanoparticles/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Administration, Topical , Animals , Chemistry, Pharmaceutical , Chitosan/chemistry , Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Drug Stability , Emulsions/chemistry , Glycerides/chemistry , Guanine/administration & dosage , Guanine/pharmacokinetics , Hydrogels/chemistry , Lavandula , Male , Oils, Volatile/administration & dosage , Oils, Volatile/adverse effects , Particle Size , Plant Oils/administration & dosage , Plant Oils/adverse effects , Rats , Rats, Wistar , Rheology , Sheep
3.
Drug Deliv ; 28(1): 741-751, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33840320

ABSTRACT

The majority of newly developed drugs need to be incorporated with delivery systems to maximize their effect and minimize side effects. Nanoemulsions (NEs) are one type of delivery system that helps to improve the solubility and dissolution of drugs, attempting to enhance their bioavailability and onset of action. The objective of this investigation was to develop an omega-3 oil-based NE loaded with loxoprofen (LXP) to enhance its dissolution, in vitro release, and mucosal penetration and decrease its mucosal ulcerative effects when applied in an oral treatment. LXP-loaded NEs were formulated with varying levels of omega-3 oil (10-30%), surfactant polyoxyethylene-C21-ethers (laureth-21) (40-60%), and co-surfactant polyethylene glycol-40 hydrogenated castor oil (HCO-40) (30-50%) using an extreme vertices mixture design. The developed NEs were characterized for globule size and drug loading capacity. The optimal formulation was tested for in vitro drug release, ex vivo permeation, and ulcer index value. The developed NE acquired a globule size ranging 71-195 nm and drug loading capacity of 43-87%. Considering the results of the in vitro release study, the optimized NE formulation achieved 2.45-fold and 2-fold increases in drug permeation across tested mucosa compared to a marketed tablet and drug aqueous dispersion, respectively. Moreover, the optimum NE exhibited the best ulcer index in comparison to drug aqueous suspension and different formulations when tested in rats. Overall, this research highlights the capacity of NEs to deliver LXP with enhanced solubility, drug release, and permeation while effectively protecting the application site from side effects of the model drug.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Fatty Acids, Omega-3/chemistry , Nanoparticles/chemistry , Phenylpropionates/pharmacology , Toothache/drug therapy , Administration, Topical , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Chemistry, Pharmaceutical , Drug Delivery Systems , Drug Liberation , Emulsions/chemistry , Male , Phenylpropionates/administration & dosage , Phenylpropionates/adverse effects , Phenylpropionates/pharmacokinetics , Rats , Sheep , Skin Absorption/physiology , Solubility , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL