Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
J Anim Sci ; 100(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35323920

ABSTRACT

A study evaluated the effects of adding multi-enzyme mixture to diets deficient in net energy (NE), standardized ileal digestible (SID) amino acids (AA), standardized total tract digestible (STTD) P, and Ca on growth performance, bone mineralization, nutrient digestibility, and fecal microbial composition of grow-finish pigs. A total of 300 pigs (initial body weight [BW] = 29.2 kg) were housed by sex and BW in 45 pens of 7 or 6 pigs and fed 5 diets in a randomized complete block design. Diets were positive control (PC), and negative control 1 (NC1) or negative control 2 (NC2) without or with multi-enzyme mixture. The multi-enzyme mixture supplied at least 1,800, 1,244, 6,600, and 1,000 units of xylanase, ß -glucanase, arabinofuranosidase, and phytase per kilogram of diet, respectively. The PC was adequate in all nutrients. The NC1 diet had lower content NE, SID AA, STTD P, and Ca than PC diet by about 7%, 7%, 32%, and 13%, respectively. The NC2 diet had lower NE, SID AA, STTD P, and Ca than PC diet by 7%, 7%, 50%, and 22%, respectively. The diets were fed in four phases based on BW: Phase 1: 29-45 kg, Phase 2: 45-70 kg, Phase 3: 70-90 kg, and Phase 4: 90-120 kg. Nutrient digestibility, bone mineralization, and fecal microbial composition were determined at the end of Phase 1. Pigs fed PC diet had greater (P < 0.05) overall G:F than those fed NC1 diet or NC2 diet. Multi-enzyme mixture increased (P < 0.05) overall G:F, but the G:F of the multi-enzyme mixture-supplemented diets did not reach (P < 0.05) that of PC diet. Multi-enzyme mixture tended to increase (P = 0.08) femur breaking strength. Multi-enzyme mixture increased (P < 0.05) the ATTD of GE for the NC2 diet, but unaffected the ATTD of GE for the NC1 diet. Multi-enzyme mixture decreased (P < 0.05) the relative abundance of the Cyanobacteria and increased (P < 0.05) relative abundance of Butyricicoccus in feces. Thus, the NE, SID AA, STTD P, and Ca could be lowered by about 7%, 7%, 49%, and 22%, respectively, in multi-enzyme mixture-supplemented diets without negative effects on bone mineralization of grow-finish pigs. However, multi-enzyme mixture supplementation may not fully restore G:F of the grow-finish pigs fed diets that have lower NE and SID AA contents than recommended by 7%. Since an increase in content of Butyricicoccus in intestine is associated with improved gut health, addition of the multi-enzyme mixture in diets for pigs can additionally improve their gut health.


A study evaluated the effects of supplementing a multi-enzyme mixture that contain fiber degrading enzymes and phytase on the growth performance, bone strength, and fecal microbial composition of grow-finish pigs fed corn-wheat-wheat bran-based diets. Five diets fed were a positive control (PC) diet, and two negative control (NC1 and NC2) diets without or with the multi-enzyme mixture. The PC diet was adequate in all nutrients and had greater available (net) energy and digestible amino content than NC1 diet or NC2 diet by 7%, and greater digestible P content than the NC1 diet (by 32%) and NC2 diet (by 50%). The diets were fed from 30 to 120 kg body weight. Feed efficiency for PC diet was greater than that for NC1 diet or NC2 diet. Multi-enzyme mixture improved feed efficiency, bone strength, and fecal concentration of beneficial micro-organisms (known as Butyricicoccus) for NC1 and NC2 diets. However, feed efficiency for the NC1 and NC2 diets did not reach that for the PC diet. Thus, multi-enzyme mixture can fully restore bone strength (but not feed efficiency) and improve health of grow-finish pigs fed corn-wheat-wheat bran-based diets in which available energy, amino acids, and P contents have been reduced by the afore-mentioned margins.


Subject(s)
6-Phytase , Swine Diseases , Animals , 6-Phytase/pharmacology , Amino Acids/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Calcification, Physiologic , Diet/veterinary , Dietary Supplements , Digestion , Feces/chemistry , Nutrients/metabolism , Swine , Zea mays/metabolism
2.
J Anim Sci ; 99(11)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34657148

ABSTRACT

The objective of this study was to determine the interactive effects of dietary fiber solubility and lipid source on growth performance, visceral organ weights, gut histology, and gut microbiota composition of weaned pigs. A total of 280 nursery pigs [initial body weight (BW) = 6.84 kg] weaned at 21 d were housed in 40 pens (7 pigs/pen). The pigs were fed four diets (10 pens/diet) in a randomized complete block design in two phases: Phase 1 from 0 to 2 wk and Phase 2 from 2 to 5 wk. The diets were corn-soybean meal-based with either sugar beet pulp (SBP) or soybean hulls (SBH) as a fiber source and either soybean oil (SBO) or choice white grease (CWG) as a lipid source in a 2 × 2 factorial arrangement. The BW and feed intake were determined by phase, whereas visceral organ weights, intestinal histology, and gut microbial composition were determined at the end of the trial. Dietary fiber solubility and lipid source did not interact (P > 0.05) on average daily feed intake and average daily gain across all phases. However, the gain to feed ratio (G:F) for CWG-containing diets was lower (P < 0.05) than that for SBO-containing diets for Phase 1. Also, G:F for SBP-containing diets was lower (P < 0.05) than that for SBH-containing diets for Phase 1 and for the entire study period. Pigs fed SBP-containing diets had greater (P < 0.05) stomach weight, and tended to have greater (P < 0.10) small and large intestine weights relative to BW than those fed SBH-containing diets. Duodenal villous height to crypt depth ratio for CWG-based diets tended to be greater (P = 0.09) than that for SBO-based diets. Fiber solubility and lipid source interacted (P < 0.05) on relative abundance of Bacteroides in the colon such that the relative abundance of the Bacteroides for CWG was greater (P < 0.05) than that for the SBO in SBP-based diet, but not in SBH-based diet. Relative abundance of Butyricicoccus in the colon for SBH-based diet was greater (P < 0.05) than that for SBP-based diet. In conclusion, inclusion of SBH instead of SBP in corn-soybean meal-based diets for weaned pigs can result in increased feed efficiency and relative abundance of Butyricicoccus in the colon, which is associated with improved gut health. Also, inclusion of SBO instead of CWG in the diets for weaned pigs can result in improved feed efficiency during Phase 1 feeding; however, the pigs may recover from the low feed efficiency induced by dietary inclusion of CWG instead of SBO after Phase 1 feeding.


Subject(s)
Animal Feed , Diet , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Fiber , Random Allocation , Solubility , Soybean Oil , Swine
3.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 667-678, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31840317

ABSTRACT

High copper feed has been widely used as an inexpensive and highly effective feed additive to promote growth performance of pigs. However, long-term feeding of high copper feed may reduce the growth-promoting effects of copper, time-dependent accumulation of copper in animal tissues and organs, and copper toxicity thereby reducing the growth performance of pigs. Due to the widespread effects of high copper supplementation in animals' diets, the benefits and drawbacks of high copper feeding in pigs have been reported in several studies. Meanwhile, few of these studies have systematically described the mechanism by which high copper diets restrain pig growth. Therefore, to address the concerns and give a better understanding of the mechanism of high copper diet in restraining pig growth in different systems, this paper reviews the research progress of long-term supplementation of high copper on the growth of pigs and provides some suggestions and further research directions.


Subject(s)
Animal Feed/analysis , Copper/administration & dosage , Dietary Supplements , Swine/growth & development , Animal Nutritional Physiological Phenomena , Animals
4.
Curr Protein Pept Sci ; 20(7): 736-749, 2019.
Article in English | MEDLINE | ID: mdl-30678624

ABSTRACT

Weaned piglets experience sudden changes in their dietary patterns such as withdrawal from the easily digestible watery milk to a coarse cereal diet with both systemic and intestinal disruptions coupling with the expression of pro-inflammatory proteins which affects the immune system and the concentrations of haptoglobin including both positive and negative acute-phase proteins in the plasma. L-arginine is an important protein amino acid for piglets, but its inadequate synthesis is a nutritional problem for both sows and piglets. Recent studies indicated that dietary supplementation of L-arginine increased feed intake, uterine growth, placental growth and nutrient transport, maternal growth and health, embryonic survival, piglets birth weight, piglet's growth, and productivity, and decreased stillbirths. L-arginine is essential in several important pathways involved in the growth and development of piglets such as nitric oxide synthesis, energy metabolism, polyamine synthesis, cellular protein production and muscle accretion, and the synthesis of other functional amino acids. However, the underlying molecular mechanism in these key pathways remains largely unresolved. This review was conducted on the general hypothesis that L-arginine increased the growth and survival of post-weaning piglets. We discussed the effects of dietary L-arginine supplementation during gestation, parturition, lactation, weaning, and post-weaning in pigs as each of these stages influences the health and survival of sows and their progenies. Therefore, the aim of this review was to discuss through a logical approach the effects of L-arginine supplementation on piglet's growth and survival from conception to postweaning.


Subject(s)
Arginine/pharmacology , Dietary Supplements , Fertilization/drug effects , Weaning , Animals , Growth and Development/drug effects , Swine
5.
RSC Adv ; 9(24): 13586-13599, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-35519545

ABSTRACT

Dietary alfalfa fiber (AF) is conceived to modulate gut microbial richness and diversity to improve the health and growth of weaning piglets. The objective of this study was to evaluate the prebiotic effects of AF on diarrhea incidence, the production of short-chain fatty acids (SCFAs), and microbiota composition in weaning piglets. This study utilized 100 crossbred piglets (Duroc × Landrace × Yorkshire) with a body weight of 8.42 ± 1.88 kg randomly assigned to the following treatments: 0.00% AF meal (A), 6.00% of AF meal (B), 12.00% AF meal (C), and 18.00% AF meal (D). The cecum samples were used to determine microbial community composition and diversity through high-throughput 16S rDNA sequencing. The results of this study show that the lowest average daily gain (ADG) was observed in treatment D, and the highest ADG was recorded in treatment C. However there was no significant difference between the treatment groups and the control. The average daily feed intake (ADFI) was significantly higher in treatment C compared to the other treatments. The feed conversion ratio was high in the control group compared to the AF treated groups. The highest diarrhea incidence was observed in treatment A and the lowest diarrhea incidence was observed in treatment C and D. The highest acetate and propionate levels were observed in treatment B, but there was no significant difference between the treatment groups and the control. The supplementation of AF significantly increased the butyrate level in treatment D compared with treatments A and B but was not significantly different from treatment C. The Observed_species richness and Simpson diversity values of the cecum bacterial composition in the AF fed piglets were higher than the control. In addition, the Chao 1 richness and Shannon diversity increased with an increase in AF supplementation, reaching a plateau at treatment B and C, then decreasing at treatment D. The Bacteroidetes, Firmicutes, Tenericutes, Proteobacteria, Cyanobacteria, Spirochaetae, Actinobacteria, Fibrobacteres, Saccharibacteria, Synergistetes, Chlamydiae, Elusimicrobia, Deferribacteres, Fusobacteria, and others were relatively abundant in all treatments. The Bacteroidetes and Firmicutes were the dominant phyla, accounting for 98% of all reads. AF treatment decreased the Bacteroidetes phylum and increased the Firmicutes phylum compared with treatment A. Therefore, the dietary inclusion of AF may decrease diarrhea incidence, increase cecal bacterial composition and richness, and consequently improve the growth performance of weaning piglets.

6.
Microbiologyopen ; 8(5): e00712, 2019 05.
Article in English | MEDLINE | ID: mdl-30117299

ABSTRACT

Astragalus membranaceus is an herbaceous perennial plant, growing to about 2 feet tall, with sprawling stems and alternate leaves about 12-24 leaflets. In total, 24 cross bred (Duroc × Landrace × Yorkshire) piglets weaned at 4 weeks with an average body weight of 10.84 ± 1.86 kg, were divided into four groups and randomly assigned to dietary treatments containing different AMSLF levels (0.00%, 2.50%, 5.00%, and 7.50%). The piglets in the control group (0.00% AMSLF) were fed basal diet and other treatment groups were fed basal diet in addition to 2.50%, 5.00%, and 7.50% pulverized AMSLF. The results indicated that supplementation with AMSLF significantly (p < 0.05) decreased diarrheal incidence in piglets. There was significant difference between treatment in terms of ADFI, ADG and FCR. Both 5.00% and 7.50% treatments significantly increased growth performance. The digestibility of gross energy and dry matter increased (p > 0.05) with increasing AMSLF level. The level of blood IL-2 and TNF-α were significantly affected by AMSLF supplementation with 7.50% AMSLF group having higher (p < 0.05) IL-2 and TNF-α levels than the other treatment groups. The 16SrDNA sequencing results from the four treatments showed that the potentially active bacterial microbial population and diversity in pig cecum were dominated by the phyla Bacteriodetes and Firmicutes regardless of the AMSLF supplementation. The Shannon diversity, PD whole tree diversity indices and Chao analyses exhibited significant variability in species richness across the treatments. The principal coordinates analysis (PCoA) showed significant (p < 0.1) differences between bacterial communities in all treatment groups. Results from the current study suggested that AMSLF supplementation increased composition of bacterial microbiota in pig gut. In conclusion, dietary supplements with AMSLF could potentially be used to prevent diarrheal incidence and improved pig production.


Subject(s)
Animals, Newborn/growth & development , Animals, Newborn/immunology , Astragalus propinquus/chemistry , Bacteria/classification , Diarrhea/veterinary , Dietary Fiber/administration & dosage , Fatty Acids, Volatile/analysis , Animals , Bacteria/genetics , Biota , Cecum/microbiology , Cluster Analysis , Cytokines/blood , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Diarrhea/prevention & control , Incidence , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Swine
SELECTION OF CITATIONS
SEARCH DETAIL