Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Sci Food Agric ; 104(7): 4039-4049, 2024 May.
Article in English | MEDLINE | ID: mdl-38376445

ABSTRACT

BACKGROUND: The objective of this study is to investigate the antiproliferative, antioxidant, antimicrobial, and enzyme activity capacities and phytochemical compositions of Thymus pectinatus (TP), Thymus convolutus (TC), which are endemic to Türkiye. Quantitative analysis of phenolic compounds in the extracts was conducted using liquid chromatography-tandem mass spectrometry, targeting 53 phenolic compounds. RESULTS: Rosmarinic acid, quinic acid, and cynaroside were identified as the major compounds, exhibiting quantitative variation in both extracts. The extracts had a high total phenolic content, with 113.57 ± 0.58 mg gallic acid equivalents (GAE)/g extract for TP and 130.52 ± 1.05 mg GAE/g extract for TC. Furthermore, although both extracts exhibited high total flavonoid content; the TP extract (75.12 ± 1.65 mg quercitin equivalents (QE)/g extract) displayed a higher flavonoid content than the TC extract (30.24 ± 0.74 mg QE/g extract) did. The extracts had a promising antiproliferative effect on C6, HeLa, and HT29 cancer cell lines with a less cytotoxic effect (10.5-14.2%) against normal cells. Both extracts exhibited very potent inhibitory activity against the xanthine oxidase enzyme, with half-maximal inhibitory concentration values of respectively 2.07 ± 0.03 µg mL-1 and 2.76 ± 0.06 µg mL-1 and moderate activity against tyrosinase and α-glucosidase. Docking simulations proved that rosmarinic acid and cynaroside, the major components of the extracts, were the most potent inhibitors of xanthine oxidase. According to antimicrobial activity results, the TC extract exhibited moderate activity against Staphylococcus aureus, and the TP extract had strong activity against both Enterococcus faecium and S. aureus. CONCLUSION: These findings emphasize the beneficial effects of the two endemic Thymus species on human health and suggest their potential use as plant-derived bioactive agents. © 2024 Society of Chemical Industry.


Subject(s)
Anti-Infective Agents , Pectinatus , Humans , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Staphylococcus aureus , Xanthine Oxidase , Anti-Infective Agents/pharmacology , Chromatography, Liquid , Flavonoids/pharmacology , Flavonoids/analysis , Phenols/analysis , HeLa Cells , Phytochemicals/chemistry
2.
Molecules ; 27(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36296707

ABSTRACT

The reliance of tumor cells on aerobic glycolysis is one of the emerging hallmarks of cancer. Pyruvate kinase M2 (PKM2), an important enzyme of glycolytic pathway, is highly expressed in a number of cancer cells. Tumor cells heavily depend on PKM2 to fulfill their divergent energetic and biosynthetic requirements, suggesting it as novel drug target for cancer therapies. Based on this context, we performed enzymatic-assay-based screening of the in-house phenolic compounds library for the identification of PKM2 inhibitors. This screening identified silibinin, curcumin, resveratrol, and ellagic acid as potential inhibitors of PKM2 with IC50 values of 0.91 µM, 1.12 µM, 3.07 µM, and 4.20 µM respectively. For the determination of Ki constants and the inhibition type of hit compounds, Lineweaver-Burk graphs were plotted. Silibinin and ellagic acid performed the competitive inhibition of PKM2 with Ki constants of 0.61 µM and 5.06 µM, while curcumin and resveratrol were identified as non-competitive inhibitors of PKM2 with Ki constants of 1.20 µM and 7.34 µM. The in silico screening of phenolic compounds against three binding sites of PKM2 provided insight into the binding pattern and functionally important amino residues of PKM2. Further, the evaluation of cytotoxicity via MTT assay demonstrated ellagic acid as potent inhibitor of cancer cell growth (IC50 = 20 µM). These results present ellagic acid, silibinin, curcumin, and resveratrol as inhibitors of PKM2 to interrogate metabolic reprogramming in cancer cells. This study has also provided the foundation for further research to validate the potential of identified bioactive entities for PKM2 targeted-cancer therapies.


Subject(s)
Curcumin , Leukemia, Myeloid, Acute , Humans , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Curcumin/pharmacology , Resveratrol/pharmacology , Ellagic Acid , Silybin , Glycolysis , Cell Line, Tumor
3.
Comput Biol Med ; 145: 105452, 2022 06.
Article in English | MEDLINE | ID: mdl-35364308

ABSTRACT

SARS-CoV-2, a rapidly spreading new strain of human coronavirus, has affected almost all the countries around the world. The lack of specific drugs against SARS-CoV-2 is a significant hurdle towards the successful treatment of COVID-19. Thus, there is an urgent need to boost up research for the development of effective therapeutics against COVID-19. In the current study, we investigated the efficacy of 81 medicinal plant-based bioactive compounds against SARS-CoV-2 Mpro by using various in silico techniques. The interaction affinities of polyphenolic compounds towards SARS-CoV-2 Mpro was assessed via intramolecular (by Quantum Mechanic), intermolecular (by Molecular Docking), and spatial (by Molecular Dynamic) simulations. Our obtained result demonstrate that Hesperidin, rutin, diosmin, and apiin are most effective compounds agents against SARS-CoV-2 Mpro as compared to Nelfinavir (positive control). This study will hopefully pave a way for advanced experimental research to evaluate the in vitro and in vivo efficacy of these compounds for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Polyphenols/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2
4.
Comb Chem High Throughput Screen ; 25(7): 1181-1186, 2022.
Article in English | MEDLINE | ID: mdl-34391377

ABSTRACT

Oxalis corniculata (Oxalidaceae) is a small decumbent and delicate appearing medicinal herb flourishing in warm temperate and tropical domains such as Pakistan and India. Main bioactive chemical constituents of Oxalis plant include several alkaloids, flavonoids, terpenoids, cardiac glycosides, saponins, and phlobatannins, along with steroids. Due to its polyphenolic, glycosides and flavonoid profile, it is proved to be protective in numerous ailments and exhibit various biological activities such as anti-fungal, anti-cancer, anti-oxidant, antibacterial, anti-diabetic, and cardioprotective. Moreover, bioactive phytochemicals from this plant possess significant wound healing potential. Our current effort intends to emphasize on the immense significance of this plant species, which have not been the subject matter of clinical trials and effective pharmacological studies, even though its favored usage has been stated. This review proposes that Oxalis corniculata possess a potential for the cure of various diseases. However, further researches on isolation and characterization of bioactive compounds along with pre-clinical trials are compulsory to figure out its pharmacological applications.


Subject(s)
Oxalidaceae , Plants, Medicinal , Anti-Bacterial Agents/pharmacology , Antioxidants , Flavonoids/pharmacology , Oxalidaceae/chemistry , Phytochemicals , Plant Extracts/chemistry , Plants, Medicinal/chemistry
5.
Biomed Res Int ; 2021: 5514669, 2021.
Article in English | MEDLINE | ID: mdl-34136566

ABSTRACT

Pyruvate kinase (PK), a key enzyme that determines glycolytic activity, has been known to support the metabolic phenotype of tumor cells, and specific pyruvate kinase isoform M2 (PKM2) has been reported to fulfill divergent biosynthetic and energetic requirements of cancerous cells. PKM2 is overexpressed in several cancer types and is an emerging drug target for cancer during recent years. Therefore, this study was carried out to identify PKM2 inhibitors from natural products for cancer treatment. Based on the objectives of this study, firstly, plant extract library was established. In order to purify protein for the establishment of enzymatic assay system, pET-28a-HmPKM2 plasmid was transformed to E. coli BL21 (DE3) cells for protein expression and purification. After the validation of enzymatic assay system, plant extract library was screened for the identification of inhibitors of PKM2 protein. Out of 51 plant extracts screened, four extracts Mangifera indica (leaf, seed, and bark) and Bombex ceiba bark extracts were found to be inhibitors of PKM2. In the current study, M. indica (leaf, seed, and bark) extracts were further evaluated dose dependently against PKM2. These extracts showed different degrees of concentration-dependent inhibition against PKM2 at 90-360 µg/ml concentrations. We have also investigated the anticancer potential of these extracts against MDA-MB231 cells and generated dose-response curves for the evaluation of IC50 values. M. indica (bark and seed) extracts significantly halted the growth of MDA-MB231 cells with IC50 values of 108 µg/ml and 33 µg/ml, respectively. Literature-based phytochemical analysis of M. indica was carried out, and M. indica-derived 94 compounds were docked against three binding sites of PKM2 for the identification of PKM2 inhibitors. The results of in silico based screening have unveiled various PKM2 modulators; however, further studies are recommended to validate their PKM2 inhibitory potential via in vitro biochemical assay. The results of this study provide novel findings for possible mechanism of action of M. indica (bark and seed) extracts against TNBC via PKM2 inhibition suggesting that M. indica might be of therapeutic interest for the treatment of TNBC.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Mangifera/metabolism , Membrane Proteins/antagonists & inhibitors , Plant Extracts/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Female , Humans , Inhibitory Concentration 50 , Kinetics , Plant Bark/metabolism , Plant Leaves/metabolism , Plasmids/metabolism , Seeds/metabolism , Tetrazolium Salts , Thiazoles , Thyroid Hormones , Triple Negative Breast Neoplasms/enzymology , Thyroid Hormone-Binding Proteins
6.
Food Chem ; 342: 128378, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33508903

ABSTRACT

Rheum ribes L. (Rhubarb) is one of the most important edible medicinal plants in the Eastern Anatolia region and is called "Iskin" by local people. Resveratrol and 6-O-methylalaternin were isolated from the Rhubarb for the first time in addition to well-known secondary metabolites including emodin, aloe-emodin, ß-sitosterol and rutin. The new semi-synthetic anthraquinone derivatives with the NαFmoc-l-Lys and ethynyl group were synthesized from the isolated anthraquinones emodin and aloe-emodin of Rhubarb to increase the bioactivities. Aloe-emodin derivative with NαFmoc-l-Lys shows the highest inhibition values by 94.11 ± 0.12 and 82.38 ± 0.00% against HT-29 and HeLa cell lines, respectively, at 25 µg/mL. Further, modification of the aloe-emodin with both the ethynyl and the NαFmoc-l-Lys groups showed an antioxidant activity-enhancing effect. From molecular docking studies, the relative binding energies of the emodin and aloe-emodin derivatives to human serum albumin ranged from -7.30 and -10.62 kcal/mol.


Subject(s)
Anthraquinones/chemistry , Antineoplastic Agents/chemical synthesis , Resveratrol/chemistry , Rheum/chemistry , Anthraquinones/chemical synthesis , Anthraquinones/isolation & purification , Anthraquinones/metabolism , Anthraquinones/pharmacology , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Emodin/chemistry , Emodin/isolation & purification , Emodin/metabolism , Emodin/pharmacology , Humans , Molecular Docking Simulation , Plant Components, Aerial/chemistry , Plant Components, Aerial/metabolism , Resveratrol/isolation & purification , Resveratrol/pharmacology , Rheum/metabolism , Serum Albumin/chemistry , Serum Albumin/metabolism
7.
Phytomedicine ; 85: 153310, 2021 May.
Article in English | MEDLINE | ID: mdl-32948420

ABSTRACT

BACKGROUND: SARS-CoV-2, an emerging strain of coronavirus, has affected millions of people from all the continents of world and received worldwide attention. This emerging health crisis calls for the urgent development of specific therapeutics against COVID-19 to potentially reduce the burden of this emerging pandemic. PURPOSE: This study aims to evaluate the anti-viral efficacy of natural bioactive entities against COVID-19 via molecular docking and molecular dynamics simulation. METHODS: A library of 27 caffeic-acid derivatives was screened against 5 proteins of SARS-CoV-2 by using Molegro Virtual Docker 7 to obtain the binding energies and interactions between compounds and SARS-CoV-2 proteins. ADME properties and toxicity profiles were investigated via www.swissadme.ch web tools and Toxtree respectively. Molecular dynamics simulation was performed to determine the stability of the lead-protein interactions. RESULTS: Our obtained results has uncovered khainaoside C, 6-O-Caffeoylarbutin, khainaoside B, khainaoside C and vitexfolin A as potent modulators of COVID-19 possessing more binding energies than nelfinavir against COVID-19 Mpro, Nsp15, SARS-CoV-2 spike S2 subunit, spike open state and closed state structure respectively. While Calceolarioside B was identified as pan inhibitor, showing strong molecular interactions with all proteins except SARS-CoV-2 spike glycoprotein closed state. The results are supported by 20 ns molecular dynamics simulations of the best complexes. CONCLUSION: This study will hopefully pave a way for development of phytonutrients-based antiviral therapeutic for treatment or prevention of COVID-19 and further studies are recommended to evaluate the antiviral effects of these phytochemicals against SARS-CoV-2 in in vitro and in vivo models.


Subject(s)
Antiviral Agents/pharmacology , Caffeic Acids/pharmacology , Functional Food , SARS-CoV-2/drug effects , Arbutin/analogs & derivatives , Arbutin/pharmacology , Binding Sites , Glucosides/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
8.
Curr Drug Metab ; 21(14): 1079-1090, 2020.
Article in English | MEDLINE | ID: mdl-32723267

ABSTRACT

Natural products, an infinite reserve of bioactive molecules, will continue to serve humans as an important source of therapeutic agents. Germacrone is a bioactive natural compound found in the traditional medicinal plants of family Zingiberaceae. This multifaceted chemical entity has become a point of focus during recent years due to its numerous pharmacological applications, e.g., anticancer, anti-inflammatory, antiviral, antioxidant, anti-adipogenic, anti-androgenic, antimicrobial, insecticidal, and neuroprotective. Germacrone is an effective inducer of cell cycle arrest and apoptosis in various cancers (breast, brain, liver, skin, prostate, gastric, and esophageal) via modulation of different cell signaling molecules and pathways involved in cancer proliferation. This is the first report highlighting the wide spectrum of pharmacological activities exhibited by germacrone. The reported data collected from various shreds of evidences recommend that this multifaceted compound could serve as a potential drug candidate in the near future.


Subject(s)
Anti-Infective Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Metabolic Diseases/drug therapy , Neoplasms/drug therapy , Sesquiterpenes, Germacrane/therapeutic use , Virus Diseases/drug therapy , Animals , Anti-Infective Agents/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Drug Synergism , Humans , Magnoliopsida/metabolism , Secondary Metabolism , Sesquiterpenes, Germacrane/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL