Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Clin Invest ; 123(8): 3272-91, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23863708

ABSTRACT

Aging is a major risk factor for a large number of disorders and functional impairments. Therapeutic targeting of the aging process may therefore represent an innovative strategy in the quest for novel and broadly effective treatments against age-related diseases. The recent report of lifespan extension in mice treated with the FDA-approved mTOR inhibitor rapamycin represented the first demonstration of pharmacological extension of maximal lifespan in mammals. Longevity effects of rapamycin may, however, be due to rapamycin's effects on specific life-limiting pathologies, such as cancers, and it remains unclear if this compound actually slows the rate of aging in mammals. Here, we present results from a comprehensive, large-scale assessment of a wide range of structural and functional aging phenotypes, which we performed to determine whether rapamycin slows the rate of aging in male C57BL/6J mice. While rapamycin did extend lifespan, it ameliorated few studied aging phenotypes. A subset of aging traits appeared to be rescued by rapamycin. Rapamycin, however, had similar effects on many of these traits in young animals, indicating that these effects were not due to a modulation of aging, but rather related to aging-independent drug effects. Therefore, our data largely dissociate rapamycin's longevity effects from effects on aging itself.


Subject(s)
Aging/drug effects , Longevity/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Transformation, Neoplastic/drug effects , Drug Evaluation, Preclinical , Granuloma/prevention & control , Immunoglobulins/blood , Leukocyte Count , Liver/drug effects , Liver/pathology , Liver Cirrhosis/prevention & control , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Muscle Strength/drug effects , Oxygen Consumption/drug effects , Phenotype , Platelet Count , Psychomotor Performance/drug effects , Survival Analysis , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Thyroid Gland/drug effects , Thyroid Gland/pathology
2.
Nat Commun ; 2: 395, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21772266

ABSTRACT

High attrition rates of novel anti-cancer drugs highlight the need for improved models to predict toxicity. Although polo-like kinase 1 (Plk1) inhibitors are attractive candidates for drug development, the role of Plk1 in primary cells remains widely unexplored. Therefore, we evaluated the utility of an RNA interference-based model to assess responses to an inducible knockdown (iKD) of Plk1 in adult mice. Here we show that Plk1 silencing can be achieved in several organs, although adverse events are rare. We compared responses in Plk1-iKD mice with those in primary cells kept under controlled culture conditions. In contrast to the addiction of many cancer cell lines to the non-oncogene Plk1, the primary cells' proliferation, spindle assembly and apoptosis exhibit only a low dependency on Plk1. Responses to Plk1-depletion, both in cultured primary cells and in our iKD-mouse model, correspond well and thus provide the basis for using validated iKD mice in predicting responses to therapeutic interventions.


Subject(s)
Antineoplastic Agents/toxicity , Cell Cycle Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , RNA Interference/drug effects , Toxicity Tests/methods , Animals , Apoptosis/genetics , Blotting, Northern , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cells, Cultured , DNA Primers/genetics , Drug Evaluation, Preclinical , Flow Cytometry , Fluorescent Antibody Technique , Gene Dosage/genetics , Gene Knockdown Techniques , Genetic Engineering/methods , Humans , Mice , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transfection , Polo-Like Kinase 1
3.
Arthritis Rheum ; 63(5): 1301-11, 2011 May.
Article in English | MEDLINE | ID: mdl-21305534

ABSTRACT

OBJECTIVE: It is difficult to identify a single causative factor for inflammatory arthritis because of the multifactorial nature of the disease. This study was undertaken to dissect the molecular complexity of systemic inflammatory disease, utilizing a combined approach of mutagenesis and systematic phenotype screening in a murine model. METHODS: In a large-scale N-ethyl-N-nitrosourea mutagenesis project, the Ali14 mutant mouse strain was established because of dominant inheritance of spontaneous swelling and inflammation of the hind paws. Genetic mapping and subsequent candidate gene sequencing were conducted to find the causative gene, and systematic phenotyping of Ali14/+ mice was performed in the German Mouse Clinic. RESULTS: A novel missense mutation in the phospholipase Cγ2 gene (Plcg2) was identified in Ali14/+ mice. Because of the hyperreactive external entry of calcium observed in cultured B cells and other in vitro experiments, the Ali14 mutation is thought to be a novel gain-of-function allele of Plcg2. Findings from systematic screening of Ali14/+ mice demonstrated various phenotypic changes: an abnormally high T cell:B cell ratio, up-regulation of Ig, alterations in body composition, and a reduction in cholesterol and triglyceride levels in peripheral blood. In addition, spermatozoa from Ali14/+ mice failed to fertilize eggs in vitro, despite the normal fertility of the Ali14/+ male mice in vivo. CONCLUSION: These results suggest that the Plcg2-mediated pathways play a crucial role in various metabolic and sperm functions, in addition to initiating and maintaining the immune system. These findings may indicate the importance of the Ali14/+ mouse strain as a model for systemic inflammatory diseases and inflammation-related metabolic changes in humans.


Subject(s)
Arthritis, Experimental/genetics , Body Composition/genetics , Infertility, Male/genetics , Phospholipase C gamma/genetics , Animals , Ethylnitrosourea/pharmacology , Flow Cytometry , Male , Mice , Mice, Mutant Strains , Mutagenesis/drug effects , Mutation/drug effects , Polymorphism, Single Nucleotide , Sperm Motility/genetics
SELECTION OF CITATIONS
SEARCH DETAIL