ABSTRACT
Stimuli-evoked and spontaneous brain activity propagates across the cortex in diverse spatiotemporal patterns. Despite extensive studies, the relationship between spontaneous and evoked activity is poorly understood. We investigate this relationship by comparing the amplitude, speed, direction, and complexity of propagation trajectories of spontaneous and evoked activity elicited with visual, auditory, and tactile stimuli using mesoscale wide-field imaging in mice. For both spontaneous and evoked activity, the speed and direction of propagation is modulated by the amplitude. However, spontaneous activity has a higher complexity of the propagation trajectories. For low stimulus strengths, evoked activity amplitude and speed is similar to that of spontaneous activity but becomes dissimilar at higher stimulus strengths. These findings are consistent with observations that primary sensory areas receive widespread inputs from other cortical regions, and during rest, the cortex tends to reactivate traces of complex multisensory experiences that might have occurred in exhibition of different behaviors.