Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Physiol ; 598(4): 731-754, 2020 02.
Article in English | MEDLINE | ID: mdl-31710095

ABSTRACT

KEY POINTS: This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase. ABSTRACT: Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide riboside (NR) boosts NAD+ levels and improves diseases associated with mitochondrial dysfunction. We aimed to determine if dietary NR supplementation in middle-aged, obese, insulin-resistant men affects mitochondrial respiration, content and morphology in skeletal muscle. In a randomized, placebo-controlled clinical trial, 40 participants received 1000 mg NR or placebo twice daily for 12 weeks. Skeletal muscle biopsies were collected before and after the intervention. Mitochondrial respiratory capacity was determined by high-resolution respirometry on single muscle fibres. Protein abundance and mRNA expression were measured by Western blot and quantitative PCR analyses, respectively, and in a subset of the participants (placebo n = 8; NR n = 8) we quantified mitochondrial fractional area and mitochondrial morphology by laser scanning confocal microscopy. Protein levels of nicotinamide phosphoribosyltransferase (NAMPT), an essential NAD+ biosynthetic enzyme in skeletal muscle, decreased by 14% with NR. However, steady-state NAD+ levels as well as gene expression and protein abundance of other NAD+ biosynthetic enzymes remained unchanged. Neither respiratory capacity of skeletal muscle mitochondria nor abundance of mitochondrial associated proteins were affected by NR. Moreover, no changes in mitochondrial fractional area or network morphology were observed. Our data do not support the hypothesis that dietary NR supplementation has significant impact on skeletal muscle mitochondria in obese and insulin-resistant men. Future studies on the effects of NR on human skeletal muscle may include both sexes and potentially provide comparisons between young and older people.


Subject(s)
Insulin Resistance , Mitochondria, Muscle/physiology , Muscle, Skeletal/physiology , Niacinamide/analogs & derivatives , Obesity/physiopathology , Humans , Male , Middle Aged , NAD/metabolism , Niacinamide/administration & dosage , Nicotinamide Phosphoribosyltransferase/metabolism , Pyridinium Compounds
2.
J Nutr Biochem ; 54: 66-76, 2018 04.
Article in English | MEDLINE | ID: mdl-29268121

ABSTRACT

Diet- and age-dependent changes in glucose regulation in mice occur, but the temporal development, mechanisms and influence of dietary fat source remain to be defined. We followed metabolic changes in three groups of mice including a low-fat diet (LFD) reference group and two high-fat, high-sucrose diets based on either fish oil (FOD) or soybean oil (SOD), rich in ω3- and ω6-polyunsaturated fatty acids, respectively, to closely monitor the age-dependent development in glucose regulation in both obese (SOD-fed) and lean (LFD- and FOD-fed) mice. We assessed glucose homeostasis and glucose clearance at week 8, 12, 16, 24, 31, and 39 and performed an insulin tolerance test at week 40. We further analyzed correlations between the gut microbiota and key metabolic parameters. Interestingly, alterations in glucose homeostasis and glucose clearance were temporally separated, while 16S ribosomal gene amplicon sequencing revealed that gut microbial alterations formed correlation clusters with fat mass and either glucose homeostasis or glucose clearance, but rarely both. Importantly, effective glucose clearance was maintained in FOD- and even increased in LFD-fed mice, whereas SOD-fed mice rapidly developed impaired glucose clearance followed by a gradual improvement from week 8 to week 39. All groups had similar responses to insulin 40 weeks post diet initiation despite severe nonalcoholic steatohepatitis in SOD-fed mice. We conclude that age-related alterations in glucose regulation may occur in both lean and obese mice and are modulated by dietary fat as indicated by the sustained metabolic homeostasis observed in mice fed ω3-polyunsaturated fatty acids.


Subject(s)
Dietary Fats/pharmacology , Fish Oils/pharmacology , Glucose/metabolism , Soybean Oil/pharmacology , Adipose Tissue, White/pathology , Age Factors , Animals , Gastrointestinal Microbiome , Gene Expression Regulation , Gluconeogenesis/genetics , Homeostasis , Insulin/metabolism , Insulin/pharmacology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Obesity/etiology , Panniculitis/etiology , Weight Gain
3.
Mediators Inflamm ; 2016: 1536047, 2016.
Article in English | MEDLINE | ID: mdl-27999451

ABSTRACT

Free fatty acid receptor-4 (FFAR4), also known as GPR120, has been reported to mediate the beneficial effects of omega-3 polyunsaturated fatty acids (ω3-PUFAs) by inducing an anti-inflammatory immune response. Thus, activation of FFAR4 has been reported to ameliorate chronic low-grade inflammation and insulin resistance accompanying obesity. However, conflicting reports on the role of FFAR4 in mediating the effects of ω3-PUFAs are emerging, suggesting that FFAR4 may not be the sole effector. Hence analyses of the importance of this receptor in relation to other signaling pathways and prominent effects of ω3-PUFAs remain to be elucidated. In the present study, we used Ffar4 knockouts (KO) and heterozygous (HET) mice fed either low fat, low sucrose reference diet; high fat, high sucrose ω3-PUFA; or high fat, high sucrose ω6-PUFA diet for 36 weeks. We demonstrate that both KO and HET mice fed ω3-PUFAs were protected against obesity, hepatic triacylglycerol accumulation, and whole-body insulin resistance. Moreover, ω3-PUFA fed mice had increased circulating protein levels of the anti-inflammatory adipokine, adiponectin, decreased fasting insulin levels, and decreased mRNA expression of several proinflammatory molecules within visceral adipose tissue. In conclusion, we find that FFAR4 signaling is not required for the reported anti-inflammatory and insulin-sensitizing effects mediated by ω3-PUFAs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fatty Acids, Omega-3/pharmacology , Liver/drug effects , Muscles/drug effects , Receptors, G-Protein-Coupled/metabolism , Animals , Diet, High-Fat , Insulin/pharmacology , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Knockout , Muscles/metabolism , Receptors, G-Protein-Coupled/genetics
SELECTION OF CITATIONS
SEARCH DETAIL