Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Host Microbe ; 27(6): 899-908.e5, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32348782

ABSTRACT

Undernourished children in low-income countries often exhibit poor responses to oral vaccination. Perturbed microbiota development is linked to undernutrition, but whether and how microbiota changes affect vaccine responsiveness remains unclear. Here, we show that gnotobiotic mice colonized with microbiota from undernourished Bangladeshi children and fed a Bangladeshi diet exhibited microbiota-dependent differences in mucosal IgA responses to oral vaccination with cholera toxin (CT). Supplementation with a nutraceutical consisting of spirulina, amaranth, flaxseed, and micronutrients augmented CT-IgA production. Mice initially colonized with a microbiota associated with poor CT responses exhibited improved immunogenicity upon invasion of bacterial taxa from cagemates colonized with a more "responsive" microbiota. Additionally, a consortium of five cultured bacterial invaders conferred augmented CT-IgA responses in mice fed the supplemented diet and colonized with the "hypo-responsive" community. These results provide preclinical proof-of-concept that diet and microbiota influence mucosal immune responses to CT vaccination and identify a candidate synbiotic formulation.


Subject(s)
Cholera , Gastrointestinal Microbiome/physiology , Malnutrition , Prebiotics , Vaccination , Animals , Bacteria/classification , Child , Cholera Toxin/pharmacology , Diet , Dietary Supplements , Disease Models, Animal , Germ-Free Life , Humans , Immunity, Mucosal , Immunoglobulin A , Male , Mice , Mice, Inbred C57BL , Mucous Membrane/immunology , Probiotics
2.
Proc Natl Acad Sci U S A ; 110(33): 13582-7, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23898195

ABSTRACT

Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage's substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.


Subject(s)
Chondroitin Sulfates/pharmacology , Desulfovibrio/growth & development , Desulfovibrio/metabolism , Diet , Gastrointestinal Tract/microbiology , Animals , Bromodeoxyuridine , Chondroitin Sulfates/administration & dosage , Chondroitin Sulfates/metabolism , DNA Primers/genetics , DNA Transposable Elements/genetics , Desulfovibrio/drug effects , Desulfovibrio/genetics , Dietary Supplements , Feces/microbiology , Gas Chromatography-Mass Spectrometry , Genetic Vectors/genetics , Humans , Hydrogen Sulfide/metabolism , Mass Spectrometry , Mice , Mutagenesis , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL