Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38612446

ABSTRACT

Camellia is an important plant genus that includes well-known species such as C. sinensis, C. oleifera, and C. japonica. The C. sinensis cultivar 'Sangmok', one of Korea's standard types of tea landraces, is a small evergreen tree or shrub. Genome annotation has shown that Korean tea plants have special and unique benefits and superior components, such as catechin. The genome of Camellia sinensis cultivar 'Sangmok' was assembled on the chromosome level, with a length of 2678.62 Mbp and GC content of 38.16%. Further, 15 chromosome-scale scaffolds comprising 82.43% of the assembly (BUSCO completeness, 94.3%) were identified. Analysis of 68,151 protein-coding genes showed an average of 5.003 exons per gene. Among 82,481 coding sequences, the majority (99.06%) were annotated by Uniprot/Swiss-Prot. Further analysis revealed that 'Sangmok' is closely related to C. sinensis, with a divergence time of 60 million years ago. A total of 3336 exclusive gene families in 'Sangmok' were revealed by gene ontology analysis to play roles in auxin transport and cellular response mechanisms. By comparing these exclusive genes with 551 similar catechin genes, 17 'Sangmok'-specific catechin genes were identified by qRT-PCR, including those involved in phytoalexin biosynthesis and related to cytochrome P450. The 'Sangmok' genome exhibited distinctive genes compared to those of related species. This comprehensive genomic investigation enhances our understanding of the genetic architecture of 'Sangmok' and its specialized functions. The findings contribute valuable insights into the evolutionary and functional aspects of this plant species.


Subject(s)
Camellia sinensis , Catechin , Humans , Secondary Metabolism , Exons , Chromosomes, Human, Pair 15 , Camellia sinensis/genetics , Tea
2.
Genes (Basel) ; 7(5)2016 May 13.
Article in English | MEDLINE | ID: mdl-27187480

ABSTRACT

Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp) genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC) content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeat (IR) regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively) on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species.

SELECTION OF CITATIONS
SEARCH DETAIL