Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Biosci Bioeng ; 129(3): 307-314, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31585860

ABSTRACT

Low protein rice (LPR) by-products were used as a source of novel multifunctional cationic peptides. The LPR by-products were separated by ampholyte-free isoelectric focusing (autofocusing) into 20 fractions containing peptides with different isoelectric points (pIs). Subsequently, the antimicrobial activity of each fraction was evaluated against four pathogenic microorganisms. In addition, the cationic peptides from fractions exhibiting antimicrobial activity were purified using reversed-phase high-performance liquid chromatography and identified using matrix-assisted laser/desorption ionization-time-of-flight mass spectroscopy. Of the 11 cationic peptides identified, five peptides with pI values greater than 9.31 and net charges greater than +2 were chemically synthesized for multiple functionalities, including antimicrobial, lipopolysaccharide (LPS)-neutralizing, and angiogenic activities. Among these five cationic peptides, only LPR-KRK, which had a net charge of +9, exhibited antimicrobial activity against three of the four pathogenic microorganisms tested. Chromogenic LPS-neutralizing assays using Limulus amebocyte lysate showed that the 50% effective concentrations of these five peptides were between 0.11 and 3.09 µM. Tube-formation assays using human umbilical vein endothelial cells showed that all five peptides exhibited significant angiogenic activity at 1 µM and 10 µM, while none exhibited hemolytic activity toward mammalian red blood cells at concentrations up to 500 µM. Our results demonstrate that these five cationic peptides exhibit multiple biological functionalities with little or no hemolytic activity. Thus, fractions containing cationic peptides obtained from LPR by-products have the potential to be used as dietary supplements and functional ingredients in food products.


Subject(s)
Oryza/chemistry , Peptides/pharmacology , Animals , Cations/chemistry , Cells, Cultured , Erythrocytes/drug effects , Hemolysis , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
J Biosci Bioeng ; 127(4): 472-478, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30337232

ABSTRACT

In this study, we investigated the lipopolysaccharide (LPS)-neutralizing and angiogenic activities of cationic peptides derived from the traditional Japanese fermented product Natto, which is made by fermenting cooked soybeans using Bacillus subtilis. Initially, we prepared 20 fractions of Natto extracts with various isoelectric points (pI's) using ampholyte-free isoelectric focusing (autofocusing). Cationic peptides were then purified from fractions 19 and 20, whose pH values were greater than 12, using reversed-phase high-performance liquid chromatography, and were identified using matrix-assisted laser/desorption ionization-time-of-flight mass spectroscopy. Among the 13 identified cationic peptides, seven (KFNKYGR, FPFPRPPHQK, GQSSRPQDRHQK, QRFDQRSPQ, ERQFPFPRPPHQK, GEIPRPRPRPQHPE, and EQPRPIPFPRPQPR) had pI's greater than 9.5, positive net charges, and differing molecular weights. These peptides were then chemically synthesized and applied to chromogenic LPS-neutralizing assays using Limulus amebocyte lysates, and 50% effective (neutralizing) concentrations of 2.6-5.5 µM were demonstrated. In addition, tube formation assays in human umbilical vein endothelial cells revealed angiogenic activities for all but one (GEIPRPRPRPQHPE) of these seven cationic peptides, with increases in relative tube lengths of 23-31% in the presence of peptides at 10 µM. Subsequent experiments showed negligible hemolytic activity of these peptides at concentrations of up to 500 µM in mammalian red blood cells. Collectively, these data demonstrate that six cationic peptides from Natto extracts, with the exception of GEIPRPRPRPQHPE, have LPS-neutralizing and angiogenic activities but do not induce hemolysis.


Subject(s)
Cations , Glycine max/chemistry , Peptides , Soy Foods/analysis , Animals , Bacillus subtilis/metabolism , Cations/analysis , Cations/isolation & purification , Cations/metabolism , Cations/pharmacology , Cells, Cultured , Fermentation , Food Analysis , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Japan , Molecular Weight , Peptides/analysis , Peptides/isolation & purification , Peptides/metabolism , Peptides/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Sheep , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL