Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
BMC Complement Med Ther ; 22(1): 172, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35752797

ABSTRACT

BACKGROUND: Globally, ischemic stroke is a major health threat to humans that causes lifelong disability and death. Mentha arvensis (MA) has been used in traditional medicine to alleviate oxidative stress and inflammation-related disorders. In the present study, the neuroprotective properties of fermented MA (FMA) extract were investigated in the gerbil and SH-SY5Y cells. model of transient global cerebral ischemia. METHODS: Bilateral common carotid artery occlusion-induced transient global cerebral ischemia in gerbil and hydrogen peroxide (H2O2)-mediated neurotoxic effects in human neuroblastoma cells (SH-SY5Y) were investigated. FMA (400 mg/kg) was orally administered for 7 days before induction of ischemic stroke. To evaluate the neuroprotective activity of FMA, we implemented various assays such as cell viability assay (MTT), lactate dehydrogenase (LDH) assay, histopathology, immunohistochemistry (IHC), histofluorescence, and western blot. RESULTS: FMA pretreatment effectively decreased transient ischemia (TI) induced neuronal cell death as well as activation of microglia and astrocytes in the hippocampal region. The protective effects of FMA extract against H2O2-induced cytotoxicity of SH-SY5Y cells were observed by MTT and LDH assay. However, FMA pretreatment significantly increased the expression of the antioxidant marker proteins such as superoxide dismutase-1 (SOD-1) and superoxide dismutase-2 (SOD-2) in the hippocampus and SH-SY5Y cells. Furthermore, the activation of mitogen-activated protein kinase (MAPK) further activated a cascade of outcomes such as neuroinflammation and apoptosis. FMA pretreatment notably decreased TI and H2O2 induced activation of MAPK (c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), and p38) proteins in hippocampus and SH-SY5Y cells respectively. Besides, pretreatment with FMA markedly reduced H2O2 mediated Bax/Bcl2 expression in SH-SY5Y cells. CONCLUSION: Thus, these results demonstrated that neuroprotective activities of FMA might contribute to regulating the MAPK signaling pathway.


Subject(s)
Brain Ischemia , Ischemic Stroke , Mentha , Neuroblastoma , Animals , Brain Ischemia/drug therapy , Cell Line, Tumor , Down-Regulation , Gerbillinae/metabolism , Humans , Hydrogen Peroxide , Mitogen-Activated Protein Kinases/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroprotection , Plant Extracts/pharmacology , Signal Transduction , Superoxide Dismutase/metabolism
2.
Arch Pharm Res ; 43(6): 582-592, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32594426

ABSTRACT

Eriodictyol is a flavonoid in the flavanones subclass. It is abundantly present in a wide range of medicinal plants, citrus fruits, and vegetables that are considered to have potential health importance. Having the considerable medicinal properties, eriodictyol has been predicted to clarify the mode of action in various cellular and molecular pathways. Evidence for the existing therapeutic roles of eriodictyol includes antioxidant, anti-inflammatory, anti-cancer, neuroprotective, cardioprotective, anti-diabetic, anti-obesity, hepatoprotective, and miscellaneous. Therefore, this review aims to present the recent evidence regarding the mechanisms of action of eriodictyol in different signaling pathways in a specific disease condition. In view of the immense therapeutic effects, eriodictyol may serve as a potential drug source to enhance community health standards.


Subject(s)
Antineoplastic Agents/pharmacology , Flavanones/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Flavanones/chemistry , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Molecular Conformation , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology
3.
Eur J Pharmacol ; 842: 291-297, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30389634

ABSTRACT

Archaeological evidence for phytomedicine has established the importance of plants as a source of biologically active molecules with beneficial effects. Related studies constitute significant tools for novel drug discovery. A major benefit of phytomedicine is that standard ethnopharmacological evidence regarding traditional uses can give indications for molecules that may be therapeutically significant. Tilianin is a polyphenol antioxidant commonly used as natural phytomedicine. At the molecular level, tilianin has been reported to modulate a number of key elements in cellular signal transduction pathways linked to oxidative stress-mediated inflammation, apoptosis, and angiogenesis. At present review, we address potential approaches for arbitrating novel tilianin biologics in medicinal applications, concentrating on the selection of personalized medicines and emphasizing tasks and prospects related to medical discoveries over the last few years. In particular, we highlight the major health benefits of tilianin, which comprise cardioprotective, neuroprotective, anti-atherogenic, anti-hypertensive, anti-diabetes, anti-inflammatory, antioxidant, anti-depressant, and miscellaneous aspects.


Subject(s)
Flavonoids/chemistry , Flavonoids/pharmacology , Glycosides/chemistry , Glycosides/pharmacology , Polyphenols/chemistry , Animals , Humans
4.
Biomed Pharmacother ; 100: 296-303, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29448206

ABSTRACT

Ulcerative colitis (UC) is a major inflammatory bowel disease (IBD) has become a worldwide emergent disease. Veronica polita (VP) is a medicinal herb that has strong antioxidant and anti-inflammatory properties. In the present study, we studied the protective effect of VP on dextran sulfate sodium (DSS)-induced experimental colitis in mice. Phytochemical screening of VP extract demonstrated the presence of high total phenolic and flavonoid contents. Compared with the DSS group, VP significantly reduced clinical symptoms with less weight loss, bloody stool, shortening of the colon, and the severity of colitis was considerably inhibited as evidenced by the reduced disease activity index (DAI) and degree of histological damage in the colon and spleen. Also, treatment with VP considerably decreased the nitric oxide (NO) and malondialdehyde (MDA) level. VP remarkably downregulated the expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), inducible nitric oxide synthetase (iNOS) and cyclooxygenase-2 (COX-2) in the colon tissue. Likewise, activation of the signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-κB) was effectively blocked by VP. Taken together, these results demonstrate that VP has an ameliorative effect on colonic inflammation mediated by modulation of oxidative stress and inflammatory mediators by suppressing the JAK2/STAT3 and NF-κB signaling pathways.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Janus Kinase 2/metabolism , NF-kappa B/metabolism , Plant Extracts/therapeutic use , STAT3 Transcription Factor/metabolism , Veronica/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Dextran Sulfate/pharmacology , Disease Models, Animal , Mice, Inbred C57BL , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Signal Transduction
5.
Int J Mol Sci ; 19(2)2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29462911

ABSTRACT

Globally, gastric ulcer is a vital health hazard for a human. Rabdosia inflexa (RI) has been used in traditional medicine for inflammatory diseases. The present study aimed to investigate the protective effect and related molecular mechanism of RI using lipopolysaccharide (LPS)-induced inflammation in RAW 246.7 cells and HCl/EtOH-induced gastric ulcer in mice. We applied 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), nitric oxide (NO), reactive oxygen species (ROS), histopathology, malondialdehyde (MDA), quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry (IHC), and Western blot analyses to evaluate the protective role of RI. Study revealed that RI effectively attenuated LPS-promoted NO and ROS production in RAW 246.7 cells. In addition, RI mitigated gastric oxidative stress by inhibiting lipid peroxidation, elevating NO, and decreasing gastric inflammation. RI significantly halted elevated gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), inducible nitric oxide synthetase (iNOS), and cyclooxygenase-2 (COX-2) in gastric tissue. Likewise, RI markedly attenuated the mitogen-activated protein kinases (MAPKs) phosphorylation, COX-2 expression, phosphorylation and degradation of inhibitor kappa B (IκBα) and activation of nuclear factor kappa B (NF-κB). Thus, experimental findings suggested that the anti-inflammatory and gastroprotective activities of RI might contribute to regulating pro-inflammatory cytokines and MAPK/NF-κB signaling pathways.


Subject(s)
Antioxidants/therapeutic use , Isodon/chemistry , MAP Kinase Signaling System , Plant Extracts/therapeutic use , Stomach Ulcer/drug therapy , Animals , Antioxidants/pharmacology , Cell Line , Cyclooxygenase 2/metabolism , Down-Regulation , Gastric Mucosa/drug effects , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipid Peroxidation , Mice , Mice, Inbred ICR , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Stomach Ulcer/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Int J Mol Sci ; 19(2)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29370076

ABSTRACT

Stress can lead to inflammation, accelerated aging, and some chronic diseases condition. Mentha arvensis (MA) is a traditional medicine having antioxidant and anti-inflammatory activities. The present study investigated the anti-stress role of MA and fermented MA (FMA) extract in immobilized rats. We studied the lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and rats were immobilized for 2 h per day for 14 days using a restraining cage. MA (100 mg/kg) and FMA (100 mg/kg) were orally administered to rats 1 h prior to immobilization. Using high-performance liquid chromatography (HPLC) analysis, we determined the rosmarinic acid content of MA and FMA. The generation of malondialdehyde (MDA) and nitric oxide (NO) in RAW 246.7 cells were suppressed by both MA and FMA. In rats, MA and FMA notably improved the body weight, daily food intake, and duodenum histology. MDA and NO level were gradually decreased by MA and FMA treatment. MA and FMA significantly controlled the stress-related hormones by decreasing corticosterone and ß-endorphin and increasing serotonin level. Moreover, protein expression levels of mitogen activated protein kinases (MAPK) and cyclooxygenase-2 (COX-2) were markedly downregulated by MA and FMA. Taken together, MA and FMA could ameliorate immobilized-stress by reducing oxidative stress, regulating stress-related hormones, and MAPK/COX-2 signaling pathways in rats. Particularly, FMA has shown greater anti-stress activities than MA.


Subject(s)
Mentha/chemistry , Plant Extracts/therapeutic use , Psychotropic Drugs/therapeutic use , Stress, Psychological/drug therapy , Animals , Body Weight , Cell Line , Corticosterone/blood , Cyclooxygenase 2/metabolism , Eating , Macrophages/drug effects , Macrophages/metabolism , Malondialdehyde/metabolism , Mice , Mitogen-Activated Protein Kinases/metabolism , Nitric Oxide/metabolism , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Psychotropic Drugs/pharmacology , Rats , Rats, Sprague-Dawley , Restraint, Physical/adverse effects , Serotonin/blood , Stress, Psychological/etiology , beta-Endorphin/blood
7.
Cell Mol Neurobiol ; 38(2): 497-505, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28477054

ABSTRACT

Sigesbeckia pubescens (SP) is a traditional Chinese medicine, possessing antioxidant and anti-inflammatory activities. In this study, we evaluate the neuroprotective activities of SP extract on glutamate-induced oxidative stress in HT22 cells and the molecular mechanism underlying neuroprotection. We applied 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), crystal violet, reactive oxygen species (ROS), lactate dehydrogenase (LDH), quantitative real-time polymerase chain reaction (qPCR), and western blot analyses for assessing the neuroprotective effects of SP extract. The experimental study revealed that SP considerably increased the cell viability, and reduced the oxidative stress promoted ROS and LDH generation in HT22 cells in a dose-dependent manner. Additionally, the morphology of HT22 cells was effectively improved by SP. Upregulated gene expressions of mitogen-activated protein kinase (MAPK) were markedly attenuated by SP. Similarly, SP notably suppressed the ROS-mediated phosphorylation of MAPK (pERK1/2, pJNK, and pp38) cascades and activation of apoptotic factor caspase-3 signaling pathway that overall contributed to the neuroprotection. Taken together, SP may exert neuroprotective effects via alteration of MAPK and caspase-3 pathways under oxidative stress condition. Therefore, SP is a potential agent for preventing oxidative stress-mediated neuronal cell death.


Subject(s)
Caspase 3/metabolism , Drugs, Chinese Herbal/pharmacology , Glutamic Acid/toxicity , MAP Kinase Signaling System/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/physiology , Drugs, Chinese Herbal/isolation & purification , MAP Kinase Signaling System/physiology , Mice , Neuroprotective Agents/isolation & purification , Oxidative Stress/physiology
8.
Biomed Pharmacother ; 95: 1139-1146, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28926923

ABSTRACT

Gastric ulcer is an important risk factor for human health globally. Camellia japonica (CJ) is a plant of which the fruits are used as traditional phytomedicine for inflammatory and immunomodulatory diseases; however, the underlying molecular mechanism has not been clarified. The present study aimed to investigate the immunopharmacological activities of Camellia japonica and validate its pharmacological targets. To evaluate the protective roles of Camellia japonica on LPS-induced inflammation in RAW 264.7 cells and HCl/EtOH-induced gastric ulcer in mice; we applied 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), nitric oxide (NO), reactive oxygen species (ROS), histopathology, malondialdehyde (MDA), quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry (IHC), and western blot analyses. We also determined the total phenolic and flavonoid content of Camellia japonica which might possess antioxidant and anti-inflammatory properties. We found the production of NO and ROS in RAW 246.7 cells were both suppressed by Camellia japonica. Moreover, Camellia japonica mitigated the HCl/EtOH-induced oxidative stress in gastric mucosa via the reduction of lipid peroxidation and elevation of NO production. Gastric mucosal damages were prominently improved by Camellia japonica, as confirmed by the histopathological evaluation. The gene expression of inflammatory cytokines and enzymes TNF-α, IL-6, IL-1ß, iNOS, and COX-2 was notably downregulated by Camellia japonica. In addition, Camellia japonica markedly attenuated the MAPKs (ERK1/2, JNK, and p38) phosphorylation, COX-2 expression, and activation of transcription factor NF-κB and as well as phosphorylation and degradation of IκBα in gastric mucosa. Taken together, the intimated anti-inflammatory and gastroprotective mechanism of Camellia japonica is mediated by modulation of oxidative stress, inflammatory cytokines, and enzymes via suppression of MAPK/NF-κB signaling pathways.


Subject(s)
Camellia/chemistry , Inflammation/drug therapy , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Plant Extracts/therapeutic use , Signal Transduction , Stomach Ulcer/drug therapy , Animals , Cell Shape/drug effects , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Flavonoids/analysis , I-kappa B Proteins/metabolism , Inflammation/complications , Inflammation/pathology , Inflammation Mediators/metabolism , Lipopolysaccharides , Malondialdehyde/metabolism , Mice , Mice, Inbred ICR , Mucous Membrane/drug effects , Mucous Membrane/pathology , Nitric Oxide/metabolism , Phenols/analysis , Phosphorylation/drug effects , Plant Extracts/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Stomach Ulcer/complications , Stomach Ulcer/enzymology , Stomach Ulcer/pathology
9.
Article in English | MEDLINE | ID: mdl-28757890

ABSTRACT

Geranium koreanum (GK) is an indigenous Chinese herbal medicine widely used for the treatment of various inflammation and liver disorders. However, the exact mechanism of action of GK remains unknown. This study aimed to investigate the protective effect and related molecular mechanism of GK on NaAsO2-induced cytotoxicity in HepG2 cells and liver damage in mice. The cytoprotective role of GK was assessed on HepG2 cells using MTT assay. Oxidative stress and lactate dehydrogenase levels were measured with ROS and LDH assay. Histopathology and serum enzymes levels were estimated. The molecular mechanism was evaluated by qPCR and immunoblotting to ensure the hepatoprotective role of GK against NaAsO2 intoxication in mice. We found cotreatment with GK significantly attenuated NaAsO2-induced cell viability loss, intracellular ROS, and LDH release. Hepatic histopathology and serum biochemical parameters, ALT, and AST were notably improved by cotreatment with GK. Beside, GK markedly altered both mRNA and protein expression level of MAPK. The proapoptotic and antiapoptotic protein Bax/Bcl-2 ratio was significantly regulated by GK. Moreover, GK remarkably suppressed the postapoptotic transcription protein cleaved caspase-3 expression. The present study reveals that GK possesses hepatoprotective activity which is probably involved in the modulation of the MAPK/caspase-3 pathway.

10.
Int J Mol Sci ; 18(7)2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28698525

ABSTRACT

Sodium arsenite (NaAsO2) has been recognized as a worldwide health concern. Hydrangea macrophylla (HM) is used as traditional Chinese medicine possessing antioxidant activities. The study was performed to investigate the therapeutic role and underlying molecular mechanism of HM on NaAsO2-induced toxicity in human liver cancer (HepG2) cells and liver in mice. The hepatoprotective role of HM in HepG2 cells was assessed by using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT), reactive oxygen species (ROS), and lactate dehydrogenase (LDH) assays. Histopathology, lipid peroxidation, serum biochemistry, quantitative real-time polymerase chain reaction (qPCR) and Western blot analyses were performed to determine the protective role of HM against NaAsO2 intoxication in liver tissue. In this study, we found that co-treatment with HM significantly attenuated the NaAsO2-induced cell viability loss, intracellular ROS, and LDH release in HepG2 cells in a dose-dependent manner. Hepatic histopathology, lipid peroxidation, and the serum biochemical parameters alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were notably improved by HM. HM effectively downregulated the both gene and protein expression level of the mitogen-activated protein kinase (MAPK) cascade. Moreover, HM well-regulated the Bcl-2-associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) ratio, remarkably suppressed the release of cytochrome c, and blocked the expression of the post-apoptotic transcription factor caspase-3. Therefore, our study provides new insights into the hepatoprotective role of HM through its reduction in apoptosis, which likely involves in the modulation of MAPK/caspase-3 signaling pathways.


Subject(s)
Arsenites/toxicity , Caspase 3/metabolism , Drugs, Chinese Herbal/pharmacology , Hydrangea/chemistry , Mitogen-Activated Protein Kinases/metabolism , Sodium Compounds/toxicity , Alanine Transaminase/metabolism , Apoptosis/drug effects , Aspartate Aminotransferases/metabolism , Hep G2 Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL