Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Med Food ; 26(9): 683-691, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38084993

ABSTRACT

Polycystic ovarian syndrome (PCOS) is an endocrine disorder in women's reproductive age. Currently, the pathophysiology of PCOS is unclear, and the limited treatment options are unsatisfactory. Virgin coconut oil (VCO) is functional food oil associated with pharmacological effects in reproductive disorders. Therefore, we aimed to evaluate whether VCO could enhance clomiphene (CLO) therapy against PCOS in female rats. Rats were randomly divided: (1) Control, (2) PCOS model, (3) PCOS + CLO, (4) PCOS + VCO, and (5) PCOS + CLO + VCO. The PCOS was induced via daily letrozole (1 mg/kg, orally) administration for 21 days. After the PCOS induction, CLO, VCO, and CLO + VCO were administered from days 22 to 36. Serum levels of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, estrogen, progesterone, and prolactin were estimated. Polymerase chain reaction gene expression for nuclear factor-erythroid-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), catalase (CAT), glutathione reductase (GSR), LH receptor (LHr), androgen receptor (AR), tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and caspase-3 were analyzed. The letrozole-induced PCOS caused considerable increases in GnRH, LH, prolactin, estrogen, and testosterone, whereas FSH decreased significantly compared to the control. The gene expression of Nrf2, HO-1, CAT, and GSR were markedly diminished, while IL-1ß, TNF-α, caspase-3, AR, and LHr prominently increased compared to control. Interestingly, the CLO and VCO separately exerted anti-inflammatory and endocrine balance effects. However, VCO-enhanced CLO effect in LH, prolactin and testosterone, Nrf2, HO-1, CAT, GSR, and AR. VCO may synergize with CLO to depress hyperandrogenism and oxidative inflammation in PCOS.


Subject(s)
Polycystic Ovary Syndrome , Animals , Female , Humans , Rats , Caspase 3 , Clomiphene/toxicity , Coconut Oil/toxicity , Estrogens , Follicle Stimulating Hormone , Gonadotropin-Releasing Hormone/pharmacology , Heme Oxygenase-1 , Letrozole/toxicity , Luteinizing Hormone , NF-E2-Related Factor 2/genetics , Polycystic Ovary Syndrome/drug therapy , Prolactin/adverse effects , Testosterone , Tumor Necrosis Factor-alpha
2.
Theriogenology ; 187: 19-26, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35500423

ABSTRACT

Metabolic syndrome, including obesity has been documented as a critical factor in male reproductive dysfunction with subsequent reduction in male fertility. The therapeutic potential of melatonin has been demonstrated against oxidative stress-induced pathologies. Therefore, the present study investigated the effects of melatonin on testicular dysfunction associated with high fat diet (FD)-induced obese rat model, and the possible involvement of peroxisome proliferator-activated receptor-γ (PPAR-γ). Adult male Wistar rats (n = 6/group) were used: control group received vehicle (normal saline), obese group received 40% FD, melatonin-treated group received melatonin (4 mg/kg), and obese plus melatonin group received melatonin and 40% FD and the treatment lasted for 12 weeks. High fat diet caused increased body weight and testicular triglyceride, total cholesterol, malondialdehyde, γ-glutamyl transferase, lactate production and lactate/pyruvate ratio as well as decreased glutathione/glutathione peroxidase, nitric oxide and PPAR-γ and circulating testosterone. Nevertheless, all these alterations were attenuated when supplemented with melatonin. Taken together, these results demonstrates that FD-induced obesity causes testicular dysfunction. In addition, the results suggest that melatonin supplementation protects against obesity-associated testicular dysfunction and this effect is accompanied by upregulation of PPAR-γ.


Subject(s)
Melatonin , Rodent Diseases , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Diet, High-Fat , Dietary Supplements , Glutathione Peroxidase/metabolism , Lactic Acid/metabolism , Male , Melatonin/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Obesity/veterinary , Oxidative Stress , PPAR gamma/metabolism , Rats , Rats, Wistar , Rodent Diseases/metabolism , Testis
3.
PLoS One ; 16(12): e0260546, 2021.
Article in English | MEDLINE | ID: mdl-34879109

ABSTRACT

BACKGROUND: Adipose and hepatic metabolic dysfunctions are critical comorbidities that also aggravate insulin resistance in obese individuals. Melatonin is a low-cost agent and previous studies suggest that its use may promote metabolic health. However, its effects on some comorbidities associated with obesity are unknown. Herein, we investigated the hypothesis that melatonin supplementation would attenuate adipose-hepatic metabolic dysfunction in high fat diet (HFD)-induced obesity in male Wistar rats. MATERIALS AND METHODS: Twenty-four adult male Wistar rats (n = 6/group) were used: Control group received vehicle (normal saline), obese group received 40% high fat diet, melatonin-treated group received 4 mg/kg of melatonin, and obese plus melatonin group received 40% HFD and melatonin. The treatment lasted for 12 weeks. RESULTS: HFD caused increased food intake, body weight, insulin level, insulin resistance and plasma and liver lipid but decreased adipose lipid. In addition, HFD also increased plasma, adipose and liver malondialdehyde, IL-6, uric acid and decreased Glucose-6-phosphate dehydrogenase, glutathione, nitric oxide and circulating obestatin concentration. However, these deleterious effects except food intake were attenuated when supplemented with melatonin. CONCLUSION: Taken together, the present results indicate that HFD exposure causes adipose-hepatic metabolic disturbance in obese animals, which are accompanied by oxidative stress and inflammation. In addition, the present results suggest that melatonin supplementation attenuates adipose-hepatic metabolic dysfunction, accompanying obesity by suppression of oxidative stress/inflammation-dependent mechanism and increasing circulating obestatin.


Subject(s)
Adipose Tissue/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , Melatonin/administration & dosage , Obesity/drug therapy , Adipose Tissue/drug effects , Animals , Disease Models, Animal , Gene Expression Regulation/drug effects , Ghrelin/blood , Ghrelin/metabolism , Glucosephosphate Dehydrogenase/blood , Glucosephosphate Dehydrogenase/metabolism , Interleukin-6/blood , Interleukin-6/metabolism , Liver/drug effects , Male , Malondialdehyde/blood , Malondialdehyde/metabolism , Melatonin/pharmacology , Nitric Oxide/blood , Nitric Oxide/metabolism , Obesity/chemically induced , Rats , Rats, Wistar , Treatment Outcome , Uric Acid/blood , Uric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL