Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Saudi Pharm J ; 32(5): 102045, 2024 May.
Article in English | MEDLINE | ID: mdl-38571766

ABSTRACT

The ergosterol from mushrooms has gained significant ethnopharmacological importance in various cultures, including China, Japan, and Europe. This compound has been found to possess immune-boosting and anti-inflammatory properties, making it useful in the treatment of immune disorders. In this study, we focused on investigating the potential anticancer properties of ergosterol isolated from the edible mushroom Leucocalocybe mongolica in breast cancer cell lines. The ergosterol was purified and identified using advanced analytical techniques such as ESI-MS and NMR. We conducted cell proliferation assays on 4 T1 breast cancer cells to assess the cytotoxic effects of ergosterol. Furthermore, we analyzed the transcription levels of BAX, caspase-7, BCL-2, STAT-3, and PARP proteins using real-time PCR and Western blot analysis. Additionally, we employed non-targeted ultra-high-performance liquid chromatography and high-resolution mass spectrometry (UPLC-MS/MS) to study the potential mechanisms underlying the anticancer effects of ergosterol at the metabolomics level. The results demonstrated a significant reduction in cell viability and the induction of apoptosis upon treatment with ergosterol, especially at higher concentrations (P < 0.05). Moreover, ergosterol affected the expression of cancer-related genes, upregulating pro-apoptotic proteins such as BAX, caspase-7, and PARP, while downregulating the anti-apoptotic proteins BCL-2 and STAT-3 (P < 0.05). Western blot analysis confirmed these findings and provided further evidence of ergosterol's role in inducing apoptosis. Metabolomics analysis revealed substantial changes in pathways related to amino acid, antioxidant, and carbohydrate metabolism. In conclusion, our study demonstrates that ergosterol exhibits anticancer effects by inducing apoptosis and modulating metabolic pathways in breast cancer cells.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668204

ABSTRACT

The biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a safe replacement for conventional chemical synthesis methods to fight plant pathogens. In this study, the antifungal activity of biosynthesized AgNPs was evaluated both in vitro and under greenhouse conditions against root rot fungi of common beans (Phaseolus vulgaris L.), including Macrophomina phaseolina, Pythium graminicola, Rhizoctonia solani, and Sclerotium rolfsii. Among the eleven biosynthesized AgNPs, those synthesized using Alhagi graecorum plant extract displayed the highest efficacy in suppressing those fungi. The findings showed that using AgNPs made with A. graecorum at a concentration of 100 µg/mL greatly slowed down the growth of mycelium for R. solani, P. graminicola, S. rolfsii, and M. phaseolina by 92.60%, 94.44%, 75.93%, and 79.63%, respectively. Additionally, the minimum inhibitory concentration (75 µg/mL) of AgNPs synthesized by A. graecorum was very effective against all of these fungi, lowering the pre-emergence damping-off, post-emergence damping-off, and disease percent and severity in vitro and greenhouse conditions. Additionally, the treatment with AgNPs led to increased root length, shoot length, fresh weight, dry weight, and vigor index of bean seedlings compared to the control group. The synthesis of nanoparticles using A. graecorum was confirmed using various physicochemical techniques, including UV spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) analysis. Collectively, the findings of this study highlight the potential of AgNPs as an effective and environmentally sustainable approach for controlling root rot fungi in beans.

3.
ACS Omega ; 9(3): 3642-3668, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284069

ABSTRACT

Fumaria indica (Hausskn.) Pugsley (FIP), a member of the Papaveraceae family, has a documented history of use in traditional medicine to treat cardiovascular ailments, particularly hypertension, and has shown substantial therapeutic efficacy among native cultures worldwide. However, the identification of bioactive compounds and the mechanism of hypotensive effect with the cardioprotective potential investigations are yet to be determined. The study aimed to identify bioactive compounds, explore the hypotensive mechanism and cardioprotective potential, and assess the safety of Fumaria indica (Hausskn.) Pugsley hydromethanolic extract (Fip.Cr). LC ESI-MS/MS analysis was performed to identify the bioactive compounds. In vitro experiments were conducted on isolated rat aorta and atria, and an in vivo invasive BP measurement model was used. Acute and subacute toxicities were assessed for 14 and 28 days, respectively. Isoproterenol (ISO) was used to develop the rats' myocardial infarction damage model. The mRNA levels of NLRP3 inflammasome and the abundance level of Firmicutes and Lactobacillus were measured by qRT-PCR. The hypotensive effect of FIP bioactive compounds was also investigated using in silico methods. Fip. Cr LC ESI-MS/MS analysis discovered 33 bioactive compounds, including alkaloids and flavonoids. In isolated rat aorta, Fip.Cr reversed contractions induced by K+ (80 mM), demonstrating a calcium entry-blocking function, and had a vasorelaxant impact on phenylephrine (PE) (1 µM)-induced contractions unaffected by L-NAME, ruling out endothelial NO participation. Fip.Cr caused negative chronotropic and inotropic effects in isolated rat atria unaffected by atropine pretreatment, eliminating cardiac muscarinic receptor involvement. Safety evaluation showed no major adverse effects. In vivo, invasive BP measurement demonstrated a hypotensive effect comparable to verapamil. Fip.Cr protected the rats from ISO-induced MI interventions significantly in biometrical and cardiac serum biochemical indicators and histological examinations by reducing inflammation via inhibiting NLRP3 inflammasome and elevating Firmicutes and Lactobacillus levels. The network pharmacology study revealed that the FIP hypotensive mechanism might involve MMP9, JAK2, HMOX1, NOS2, NOS3, TEK, SERPINE1, CCL2, and VEGFA. The molecular docking study revealed that FIP bioactive compounds docked better with CAC1C_ HUMAN than verapamil. These findings demonstrated that Fip.Cr's hypotensive mechanism may include calcium channel blocker activity. Fip.Cr ameliorated ISO-induced myocardial infarction in rats by attenuating inflammation, which might be via inhibiting NLRP3 inflammasome and may prove beneficial for treating MI.

4.
Animals (Basel) ; 13(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37570347

ABSTRACT

To determine the effects of organic selenium (0.0-0.6 mg and 0.9 mg Se/Kg diet) and Zn-Cr mixture (100 mg Zn/Kg diet plus 1.5 mg Cr/Kg diet) on broiler chicken performance, carcass traits, blood hematology, and biochemistry under heat stress conditions, this study was conducted. Under temperatures between 30.21 to 31.82 °C, 240 broiler chickens (Ross-308), which were 7-day-old, were randomly assigned to one of six treatments: T1 (control), T2 (100 mg Zn per kg of diet and 1.5 mg Cr per kg of diet), T3 (0.6 mg Se per kg of diet), T4 (0.9 mg Se per kg of diet), T5 (100 mg Zn, 1.5 mg Cr and (LSe), and T6 (100 mg Zn, 1.5 mg Cr and (HSe)). At 35 days old, the chicks fed a diet containing Zn-Cr with low or high organic selenium (organic-Se) outweighed the control group in terms of live body weight, weight gain, and feed conversion ratio (p < 0.05). In comparison to the control treatment, birds fed diets supplemented with Zn-Cr or organic-Se (LSe, HSe) significantly increased their serum levels of total protein and total antioxidant capacity. However, these additives resulted in a decrease (p < 0.01) in their serum levels of triglycerides, total cholesterol, low-density lipoprotein (LDL) cholesterol, creatinine, and uric acid. Together, it was found that trace elements (Zn-Cr and organic-Se) may greatly lessen the impacts of heat stress on broilers by promoting growth performance and boosting metabolic processes.

5.
Environ Sci Pollut Res Int ; 30(29): 73870-73880, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37195603

ABSTRACT

The goal of the current study was to synthesize zinc oxide nanoparticles (ZnO-NPs) using ZnCl2.2H2O salt precursor and an aqueous extract of Nephrolepis exaltata (N. exaltata), which act as a capping and reducing agent. N. exaltata plant extract-mediated ZnO-NPs were further characterized by various techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-visible (UV-Vis), and energy-dispersive X-ray (EDX) analysis. The nanoscale crystalline phase of ZnO-NPs was analyzed by the XRD patterns. The FT-IR analysis revealed different functional groups of biomolecules involved in the reduction and stabilization of the ZnO-NPs. The light absorption and optical properties of ZnO-NPs were examined by UV-Vis spectroscopy at a wavelength of 380 nm. The spherical shape morphology of ZnO-NPs with mean particle size ranges between 60 and 80 nm was confirmed by SEM images. While the EDX analysis was used to identify the elemental composition of ZnO-NPs. Furthermore, the synthesized ZnO-NPs demonstrate potential antiplatelet activity by inhibiting the platelet aggregation induced by platelet activation factor (PAF) and arachidonic acid (AA). The results showed that synthesized ZnO-NPs were more effective in inhibiting platelet aggregation induced by AA with IC50 (56% and 10 µg/mL) and PAF (63% and 10 µg/mL), respectively. However, the biocompatibility of ZnO-NPs was assessed in human lung cancer cell line (A549) under in vitro conditions. The cytotoxicity of synthesized nanoparticles revealed that cell viability decreased and the IC50 was found to be 46.7% at a concentration of 75 µg/mL. The present work concluded the green synthesis of ZnO-NPs that was achieved by N. exaltata plant extract and showed good antiplatelet and cytotoxic activity, which demonstrates the lack of harmful effects making them more effective for use in pharmaceutical and medical fields to treat thrombotic disorders.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Nanoparticles , Tracheophyta , Zinc Oxide , Humans , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents/pharmacology , Tracheophyta/metabolism , X-Ray Diffraction , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests
6.
Nutrients ; 13(7)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34371877

ABSTRACT

Pathological mechanisms underlining diabetic bone defects include oxidative damage and insulin/IGF-1 imbalance. Morin is a bioflavonoid with antioxidant and anti-diabetic effects. This study evaluates morin's protective effects against altered bone histomorphometry in diabetic rats through assessing insulin/IGF-1 pathway as a potential mechanism. Diabetic animals were administered two morin doses (15 and 30 mg/kg) for 5 weeks. Different serum hepatic and renal functions tests were assessed. Bone density and histomorphometry in cortical and trabecular tissues were evaluated histologically. The expressions of insulin, c-peptide and IGF-1 were estimated. In addition, the enzymatic activities of the major antioxidant enzymes were determined. Diabetic-associated alterations in serum glucose, aminotransferases, urea and creatinine were attenuated by morin. Diabetic bone cortical and trabecular histomorphometry were impaired with increased fibrosis, osteoclastic functions, osteoid formation and reduced mineralization, which was reversed by morin; particularly the 30 mg/kg dose. Insulin/IGF-1 levels were diminished in diabetic animals, while morin treatment enhanced their levels significantly. Diabetes also triggered systemic oxidative stress noticeably. The higher dose (30 mg/kg) of morin corrected the endogenous antioxidant enzymatic activities in diabetic rats. Findings indicate the potential value of morin supplementation against hyperglycemia-induced skeletal impairments. Activation of insulin/IGF-1 signaling could be the underlining mechanism behind these effects.


Subject(s)
Antioxidants/pharmacology , Blood Glucose/drug effects , Bone Density/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Femur/drug effects , Flavonoids/pharmacology , Hypoglycemic Agents/pharmacology , Insulin-Like Growth Factor I/metabolism , Insulin/blood , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/pathology , Femur/metabolism , Femur/pathology , Male , Oxidative Stress/drug effects , Rats, Wistar , Signal Transduction , Streptozocin
7.
Curr Pharm Des ; 27(4): 505-512, 2021.
Article in English | MEDLINE | ID: mdl-33327903

ABSTRACT

Flavonoids represent a large diverse group of natural products that are used as a traditional medicine against various infectious diseases. They possess many biological activities including antimicrobial, antioxidant, anti-inflammatory, anti-cancer and anti-diabetic activities. Commercially, flavonoids are mainly obtained from plants, however, several challenges are faced during their extraction. Microorganisms have been known as natural sources of a wide range of bioactive compounds including flavonoids. Actinobacteria are the most prolific group of microorganisms for the production of bioactive secondary metabolites, thus facilitating the production of flavonoids. The screening programs for bioactive compounds revealed the potential application of actinobacteria to produce flavonoids with interesting biological activities, especially anticancer activities. Since marine actinobacteria are recognized as a potential source of novel anticancer agents, they are highly expected to be potential producers of anticancer flavonoids with unusual structures and properties. In this review, we highlight the production of flavonoids by actinobacteria through classical fermentation, engineering of plant biosynthetic genes in a recombinant actinobacterium and the de novo biosynthesis approach. Through these approaches, we can control and improve the production of interesting flavonoids or their derivatives for the treatment of cancer.


Subject(s)
Actinobacteria , Antineoplastic Agents , Biological Products , Antineoplastic Agents/pharmacology , Bacteria , Biological Products/pharmacology , Flavonoids/pharmacology , Humans
8.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105570

ABSTRACT

Wounds and burn injury are major causes of death and disability worldwide. Myricetin is a common bioactive flavonoid isolated naturally from the plant kingdom. Herein, a topical application of naturally isolated myricetin from the shoots of Tecomaria capensis v. aurea on excisional wound healing that was performed in albino rats. The wounded rats were treated every day with 10 and 20% myricetin for 14 days. During the experiment, the wound closure percentage was estimated at days 0, 7, and 14. Effects of myricetin on the inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and cluster of differentiation 68 (CD68) in the serum were evaluated using immunosorbent assay kits. The percentage of wound closure and contraction was delayed in wounded rats (67.35%) and was remarkably increased after treatment of wounded rats with myricetin; the treatment with 20% myricetin was the most potent (98.76%). Histological findings exhibited that 10% myricetin caused the formation of a large area of scarring at the wound enclosure and stratified squamous epithelium without the formation of papillae as in the control group. Treatment with 20% myricetin exhibited less area of scarring at the wound enclosure as well as re-epithelialization with a high density of fibroblasts and blood capillaries in the wound. Level elevations of serum pro-inflammatory cytokines, IL-1ß, and TNF-α and macrophage CD68 were decreased in wounded rats treated with myricetin. Thus, it can be suggested that the enhancements in inflammatory cytokines as well as systemic reorganization after myricetin treatment may be recommended to play a crucial part in the promotion of wound healing. The findings suggest that treatment with a higher dose of myricetin was better in improving wound curing in rats. It could serve as a potent anti-inflammatory agent and can be used as an adjunctive or alternative agent in the future.


Subject(s)
Anti-Inflammatory Agents/chemistry , Bignoniaceae/chemistry , Burns/drug therapy , Flavonoids/chemistry , Plant Extracts/chemistry , Plant Shoots/chemistry , Wound Healing/drug effects , Administration, Topical , Animals , Anti-Inflammatory Agents/administration & dosage , Antigens, CD/blood , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/blood , Antigens, Differentiation, Myelomonocytic/metabolism , Capillaries/drug effects , Cytokines/blood , Cytokines/metabolism , Dose-Response Relationship, Drug , Female , Fibroblasts/drug effects , Flavonoids/administration & dosage , Humans , Macrophages/drug effects , Plant Extracts/administration & dosage , Rats
9.
Molecules ; 25(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942704

ABSTRACT

Cyperus has been commonly used as a multi-use medicinal plant in folk medicine worldwide. The objectives of our study were to determine the different metabolites in the Cyperus conglomeratus Rottb. methanol extract, and to assess its in vivo gastroprotective effect in ethanol-induced gastric ulcer model in rats. Serum levels of galactin-3 and TNF-α were employed as biochemical markers. To pinpoint for active agents, comprehensive metabolites profiling of extract via UPLC-qTOF-MS/MS was employed. A total of 77 chromatographic peaks were detected, of which 70 were annotated. The detected metabolites were categorized into phenolic acids and their derivatives, flavonoids, stilbenes, aurones, quinones, terpenes, and steroids. Rats were divided into six groups; healthy control, ulcer control, standard drug group, and 25, 50, 100 mg/kg of C. conglomeratus treated rats. Pre-treatment with C. conglomeratus alcohol extract significantly reduced galactin-3, and TNF-α in ethanol-induced ulcer model at 25, 50, and 100 mg/kg. Further histopathological and histochemical studies revealed moderate erosion of superficial epithelium, few infiltrated inflammatory cells, and depletion of gastric tissue glycoprotein in the ulcer group. Treatment with the extract protected the gastric epithelial cells in a dose-dependent manner. It could be concluded that C. conglomeratus extract provides significant gastroprotective activity in ethanol-induced gastric ulcer and ought to be included in nutraceuticals in the future for ulcer treatment.


Subject(s)
Anti-Ulcer Agents/chemistry , Cyperus/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Administration, Oral , Animals , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Chromatography, High Pressure Liquid , Cyperus/metabolism , Ethanol/toxicity , Female , Galectin 3/blood , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Components, Aerial/chemistry , Plant Components, Aerial/metabolism , Ranitidine/therapeutic use , Rats , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Tandem Mass Spectrometry , Tumor Necrosis Factor-alpha/blood
10.
Saudi Pharm J ; 28(8): 951-962, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32792840

ABSTRACT

In 30% of epileptic individuals, intractable epilepsy represents a problem for the management of seizures and severely affects the patient's quality of life due to pharmacoresistance with commonly used antiseizure drugs (ASDs). Surgery is not the best option for all resistant patients due to its post-surgical consequences. Therefore, several alternative or complementary therapies have scientifically proven significant therapeutic potential for the management of seizures in intractable epilepsy patients with seizure-free occurrences. Various non-pharmacological interventions include metabolic therapy, brain stimulation therapy, and complementary therapy. Metabolic therapy works out by altering the energy metabolites and include the ketogenic diets (KD) (that is restricted in carbohydrates and mimics the metabolic state of the body as produced during fasting and exerts its antiepileptic effect) and anaplerotic diet (which revives the level of TCA cycle intermediates and this is responsible for its effect). Neuromodulation therapy includes vagus nerve stimulation (VNS), responsive neurostimulation therapy (RNS) and transcranial magnetic stimulation therapy (TMS). Complementary therapies such as biofeedback and music therapy have demonstrated promising results in pharmacoresistant epilepsies. The current emphasis of the review article is to explore the different integrated mechanisms of various treatments for adequate seizure control, and their limitations, and supportive pieces of evidence that show the efficacy and tolerability of these non-pharmacological options.

11.
Int J Med Sci ; 17(9): 1156-1166, 2020.
Article in English | MEDLINE | ID: mdl-32547311

ABSTRACT

Hypercholesterolemia is a major risk factor for several cardiovascular and metabolic diseases as it triggers oxidative and pro-inflammatory cascades. Baicalein (BL) is a natural flavone with multiple therapeutic properties. The present study aimed to evaluate the potential protective effect of BL supplementation in hypercholesterolaemic rats. Rats were fed a high-cholesterol diet (HCD) for six weeks and then orally administered BL at two doses (25 and 50 mg/kg body weight/day) for four weeks. Serum lipids, liver enzymes, cardiac enzymes, renal markers, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), interleukin-10 (IL-10), caspase-3, nitric oxide (NO) and prostaglandin-2 (PGE-2) were measured. In renal, hepatic, and cardiac tissues, thiobarbituric acid-reactive (TBARS) substance, glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were measured. The altered levels of lipoproteins, aminotransferases, creatine kinases, and urea in hypercholesterolemic animals were significantly corrected by BL. Inflammatory and apoptotic biomarkers were also markedly attenuated in the HCD group following BL treatment. Hypercholesterolemia considerably induced the lipid peroxidation product, TBARS, and oxidative radicals in cardiac, hepatic, and renal tissues, which were attenuated by BL treatment, particularly, at the 50 mg/kg/day dose. BL enhanced the activities of superoxide dismutase, catalase, and glutathione peroxidase that were suppressed by HCD. Histological alterations induced by cholesterol overload in cardiac, hepatic, and renal tissues were ameliorated by BL supplementation. Our results show that the BL treatments (25 and 50 mg/kg/day) to HCD fed rats improved all the altered parameters. These results demonstrate that BL treatment improves cardiac, renal and hepatic dysfunctions in hypercholesterolaemic rats by activation of cellular antioxidant enzymes and/or suppression of inflammatory cytokines.


Subject(s)
Flavanones/therapeutic use , Hypercholesterolemia/drug therapy , Hypercholesterolemia/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Animals , Catalase/metabolism , Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Male , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
12.
Article in English | MEDLINE | ID: mdl-33488745

ABSTRACT

Earlier studies revealed the potential therapeutic values of Loranthus regularis (L. regularis). This study evaluated Loranthus regularis (L. regularis) extract systemic antidiabetic effects and benefits against diabetic hepatocellular injuries through antioxidant and anti-inflammatory pathways using the streptozotocin (STZ) model in Wistar albino rats. After diabetes induction, animals were orally treated with L. regularis extract for 4 weeks. Serum levels of glucose, insulin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), total triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were estimated. Furthermore, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), caspase-3, nitric oxide (NO), and prostaglandin E-2 (PGE-2) were estimated in serum. In liver, thiobarbituric acid reactive substances (TBARSs) and reduced glutathione (GSH) as well as the proinflammatory cytokines and enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reeducates (GR), and glutathione-S-transferase (GST) were assayed. Finally, the degree of hepatic tissue damage was evaluated histologically. Treatment of the diabetic rats with L. regularis extract markedly reduced the elevated serum levels of glucose, ALT, AST, TC, TG, LDL, TNF-α, IL-1ß, IL-6, caspase-3, NO, and PGE-2. L. regularis extract also improved serum levels of insulin and HDL. The elevated TBARS, TNF-α, IL-1ß, and IL-6 levels in hepatic tissue of diabetic animals were reduced by L. regularis. Moreover, L. regularis extract significantly restored the diminished hepatic GSH level and enzymatic activities of SOD, CAT, GPx, GR, and GST in diabetic animals. The biochemical protective effects of L. regularis were associated with improved histological hepatocellular integrity and architecture. Taken together, L. regularis has therapeutic effects against diabetic-induced hepatic complications. The restored liver functions and cellular damage might be mediated through free radicals scavenging and proinflammatory cytokine inhibition.

13.
J Anim Physiol Anim Nutr (Berl) ; 103(2): 534-546, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30597625

ABSTRACT

Using nutritional antioxidants in livestock systems is considered the key in improving animal production. The current study assumes that dietary tomato powder (TP) supplementation positively affects haemato-immunological, biochemical, and antioxidant parameters for New Zealand rabbits. A total of 30 rabbits (45 days old) were assigned to three groups, including a diet with no additives (control), and two dietary treatments with the providing of 1% or 2% TP. Mass spectrometric study for TP methanolic extract showed some phenolic compounds. Consumption of TP supplemented diets significantly (p < 0.001) affected body weight gain and feed efficiency. Red blood cells and white blood cells count exhibited a significant increase (p < 0.001) in both TP groups compared with the control. In addition to, feeding rabbits on TP enhanced cell-mediated and humoral immune responses through a significant increase in phagocytosis, chemotaxis, and levels of immunoglobulins (TIg, IgG, IgM and IgA). Supplementation of TP significantly (p < 0.01) reduced lipid profile induces except high-density lipoprotein cholesterol values. A remarkable significant (p < 0.001) effect on serum and hepatic oxidative stress responses were observed with TP addition. Ultimately, TP supplementation could play a potential role as a growth and health enhancer for fattening rabbits.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Powders , Rabbits/growth & development , Solanum lycopersicum , Animal Nutritional Physiological Phenomena , Animals , Antioxidants/metabolism , Biomarkers , Food Handling , Fruit , Oxidative Stress
14.
BMC Complement Altern Med ; 17(1): 45, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28086769

ABSTRACT

BACKGROUND: Liver diseases are major global health problems. Ginseng extract has antioxidant, immune-modulatory and anti-inflammatory activities. This study investigated the effect of ginseng extract on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. METHODS: Male Wistar rats were divided into four groups: control group, ginseng group, CCl4 group and CCl4 + ginseng group. Liver injury was induced by the intraperitoneal (I.P) injection of 3 ml/kg CCl4 (30% in olive oil) weekly for 8 weeks. The control group was I.P injected with olive oil. The expression of genes encoding transforming growth factor beta (TGF-ß), type I TGF-ß receptor (TßR-1), type II TGF-ß receptor (TßR-II), mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad4, matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor matrix metalloproteinase-1 (TIMP-1), Collagen 1a2 (Col1a2), Collagen 3a1 (Col3a1), interleukin-8 (IL-8) and interleukin -10 (IL-10) were measured by real-time PCR. RESULTS: Treatment with ginseng extract decreased hepatic fat deposition and lowered hepatic reticular fiber accumulation compared with the CCl4 group. The CCl4 group showed a significant increase in hepatotoxicity biomarkers and up-regulation of the expression of genes encoding TGF-ß, TßR-I, TßR-II, MMP2, MMP9, Smad-2,-3, -4, and IL-8 compared with the control group. However, CCl4 administration resulted in the significant down-regulation of IL-10 mRNA expression compared with the control group. Interestingly, ginseng extract supplementation completely reversed the biochemical markers of hepatotoxicity and the gene expression alterations induced by CCl4. CONCLUSION: ginseng extract had an anti-fibrosis effect via the regulation of the TGF-ß1/Smad signaling pathway in the CCl4-induced liver fibrosis model. The major target was the inhibition of the expression of TGF-ß1, Smad2, and Smad3.


Subject(s)
Liver Cirrhosis/drug therapy , Panax/chemistry , Plant Extracts/administration & dosage , Transforming Growth Factor beta1/metabolism , Animals , Carbon Tetrachloride/adverse effects , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Male , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Wistar , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Smad Proteins/genetics , Smad Proteins/metabolism , Transforming Growth Factor beta1/genetics
15.
BMC Complement Altern Med ; 15: 204, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26122042

ABSTRACT

BACKGROUND: Diabetes mellitus with the successive generation of reactive oxygen species signifies a major risk factor for testicular dysfunction. Antioxidant supplements are one of the best options to prevent such disorder. In the present study, lutein as dietary supplement has been used to explore its potential protective effects against diabetes-induced oxidative stress in testicular cells. METHODS: Diabetes was induced using a single i.p. injection of streptozotocin (STZ). Lutein was mixed with rat chow powder and supplemented to diabetic rats for 5 weeks. Serum testosterone levels were estimated. In testicular cells, thiobarbituric acid reactive substances (TBARS), total sulfhydryl groups (T-GSH), non-protein sulfhydryl groups (NP-SH), superoxide dismutase (SOD) and catalase (CAT) activities were measured. Pro-inflammatory mediators like tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) were measured in the testis. Nucleic acids and total protein (TP) levels were also estimated in testicular cells. Histopathological changes were evaluated in testis. RESULTS: Serum testosterone level was significantly decreased in diabetic animals compared to controls. Diabetes markedly reduced T-GSH, NP-SH, CAT and SOD, while TBARS, TNF-α and IL-1ß levels were increased in the diabetic testis compared to non-diabetic controls. Lutein supplementation, significantly and dose dependently increased the serum testosterone level. The elevated TBARS levels were significantly decreased compared to diabetic group, while the decreased levels of T-GSH and NP-SH and activities of CAT and SOD were found increased by lutein treatments in dose dependent manner. Lutein pretreatment also inhibited the TNF-α and IL-1ß levels compared to diabetic group. The decreased values of nucleic acids and total protein in diabetic group were also significantly increased in lutein supplemented groups. The histopathological evaluation revealed protection the damaged testicular cells in the diabetic rats by lutein supplementation. CONCLUSION: These findings showed that lutein has potential beneficial effects in diabetes-induced testicular damage, probably through its antioxidant and anti-inflammatory properties.


Subject(s)
Dietary Supplements , Lutein/pharmacology , Oxidative Stress/drug effects , Testis/drug effects , Animals , Lutein/administration & dosage , Male , Rats , Streptozocin/adverse effects
16.
Acta Pharmacol Sin ; 36(2): 209-20, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25544359

ABSTRACT

AIM: Depression is a risk factor for impaired bone mass and micro-architecture, but several antidepressants were found to increase the incidence of osteoporotic fractures. In the present study we used ovariectomized (OVX) rats as a model of osteoporosis to investigate the effects of the antidepressant bupropion on the femoral bones. METHODS: OVX animals were treated with bupropion (30, 60 mg·kg(-1)·d(-1)) for six weeks. Bone turnover biomarkers (urinary DPD/Cr ratio, serum BALP, OC, TRAcP 5b, CTX and sRANKL levels) and inflammatory cytokines (TNF-α, IL-1ß and IL-6) were determined using ELISA. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the femoral bone mineral concentrations. The cortical and trabecular morphometric parameters of femoral bones were determined using micro-CT scan and histopathology. RESULTS: In OVX rats, the levels of bone turnover biomarkers and inflammatory cytokines were significantly elevated and femoral bone Ca(2+) and PO4(3-) concentrations were significantly reduced. Moreover, cortical and trabecular morphometric parameters and histopathology of femoral bones were severely altered by ovariectomy. Bupropion dose-dependently inhibited the increases in bone turnover biomarkers and inflammatory cytokines. OVX rats treated with the high dose of bupropion showed normal mineral concentrations in femoral bones. The altered morphometric parameters and histopathology of femoral bones were markedly attenuated by the treatment. CONCLUSION: Bupropion exerts osteo-protective action in OVX rats through suppressing osteoclastogenesis-inducing factors and inflammation, which stabilize the osteoclasts and decrease bone matrix degradation or resorption.


Subject(s)
Antidepressive Agents/adverse effects , Bupropion/adverse effects , Osteoporosis/physiopathology , Animals , Bone Density/drug effects , Female , Femur/drug effects , Ovariectomy/methods , Rats , Rats, Wistar
17.
BMC Complement Altern Med ; 14: 49, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24507431

ABSTRACT

BACKGROUND: Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. METHODS: Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. RESULTS: In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited AA-induced elevation of pro-inflammatory cytokines, PGE2 and NO levels in colon. The apparent UC protection was further confirmed by the histopathological screening. CONCLUSION: The GS leaves extract showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Colitis, Ulcerative/prevention & control , Colon/drug effects , Gymnema sylvestre , Phytotherapy , Plant Extracts/therapeutic use , Acetic Acid , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase/metabolism , Colitis/chemically induced , Colitis/metabolism , Colitis/prevention & control , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colon/metabolism , Glutathione/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Plant Extracts/pharmacology , Plant Leaves , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances , Tumor Necrosis Factor-alpha/metabolism
18.
Neurol Sci ; 35(7): 1003-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24413816

ABSTRACT

Diabetes-induced damages in brain are known as diabetic encephalopathy, which is well characterized by cellular, molecular and functional changes in the brain of diabetic subjects and rodents. However, little is known about the mechanism of damages and the therapeutic strategies in ameliorating those damages in the diabetic brain. In this study, we utilized a flavonoid, morin which is emerging as a potent drug against a wide range of free radical-mediated as well as neurodegenerative diseases. Morin (15 and 30 mg/kg body weight/day) was orally administered to two different groups of rats after 1 week of diabetes induction, and continued for five consecutive weeks. Two other untreated groups of diabetic and non-diabetic rats were used to compare with drug-treated groups. After drug treatments, cerebral cortex of the brain harvested and analyzed for different factors. Morin supplementation especially at high dose increased the levels of insulin, reduced glutathione, superoxide dismutase and catalase activities, and decreased fasting glucose and thiobarbituric acid reactive substances in the diabetic brain compared to untreated diabetic rats (P < 0.05). Morin also significantly decreased the level of inflammatory markers (TNFα, IL1ß, IL-6) in the diabetic brain compared to untreated diabetic rats. Furthermore, the drug influenced an increase in the level of neurotrophic factors (BDNF, NGF and IGF-1) in the diabetic brain compared to untreated diabetic rats (P < 0.05). Thus, our results indicate a beneficial effect of morin by decreasing oxidative stress, inflammation and increasing the neurotrophic support in the diabetic brain, which may ameliorate diabetic encephalopathy.


Subject(s)
Antioxidants/therapeutic use , Diabetes Mellitus, Experimental , Flavonoids/therapeutic use , Inflammation , Nerve Growth Factors/metabolism , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Blood Glucose/drug effects , Body Weight/drug effects , Brain/drug effects , Brain/physiopathology , Catalase/metabolism , Cytokines/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Flavonoids/pharmacology , Glutathione/metabolism , Inflammation/drug therapy , Inflammation/etiology , Inflammation/metabolism , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
19.
World J Gastroenterol ; 19(34): 5633-44, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-24039355

ABSTRACT

AIM: To evaluate the ameliorative effect of naringenin (NG) during ulcerative colitis (UC) in rats. METHODS: Rats were treated with three different doses (25, 50 and 100 mg/kg per day) of NG and a single dose of mesalazine (MES, 300 mg/kg per day) for seven days prior to ulcerative colitis induction by 4% acetic acid (AA). Twenty four hours after AA rectal administration, animals were scarified and the colonic tissues were dissected. Colonic mucus content was estimated using Alcian blue dye binding technique. In colon tissues, levels of total glutathione sulphadryls (T-GSH), non-protein sulphadryls (NP-SH) and thiobarbituric acid reactive substances (TBARS) were evaluated. The activities of the antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD) were measured. Concentrations of nucleic acids (DNA and RNA) and total protein were also estimated in colon tissues. Colonic levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated. In cross section of colitis tissue the histopathological changes were observed. RESULTS: Colonic mucus content was decreased in AA compared to controls (587.09 ± 65.59 mg/kg vs 941.78 ± 68.41 mg/kg, P < 0.001). AA administration markedly reduced T-GSH (5.25 ± 0.37 nmol/L vs 3.04 ± 0.24 nmol/L, P < 0.01), NP-SH (3.16 ± 0.04 nmol/L vs 2.16 ± 0.30 nmol/L, P < 0.01), CAT (6.77 ± 0.40 U/mg vs 3.04 ± 0.2 U/mg, P < 0.01) and SOD (3.10 ± 0.11 U/mg vs 1.77 ± 0.18 U/mg, P < 0.01) while TBARS, TNF-α, IL-1ß, IL-6, PGE2 and NO levels (15.09 ± 3.84 nmol/L vs 59.90 ± 16.34 nmol/L, P < 0.01; 113.56 ± 1.91 pg/mg vs 134.24 ± 4.77 pg/mg, P < 0.01; 209.20 ± 36.38 pg/mg vs 422.19 ± 31.47 pg/mg, P < 0.01; 250.83 ± 25.09 pg/mg vs 638.58 ± 115.9 pg/mg, P < 0.01; 248.19 ± 36.98 pg/mg vs 541.74 ± 58.34 pg/mg, P < 0.01 and 81.26 ± 2.98 mmol/g vs 101.90 ± 10.73 mmol/g, P < 0.001) were increased in colon of rats with UC compared controls respectively.Naringenin supplementation, significantly and dose dependently increased the colonic mucus content. The elevated TBARS levels were significantly decreased (39.35 ± 5.86 nmol/L, P < 0.05; 26.74 ± 3.17 nmol/L, P < 0.01 nmol/L and 17.74 ± 2.69 nmol/L, P < 0.01) compared to AA (59.90 ± 16.34 nmol/L) group while the decreased levels of T-GSH and NP-SH and activities of CAT and SOD found increased by NG treatments in dose dependent manner. The decreased values of nucleic acids and total protein in AA group were also significantly (P < 0.01) increased in all three NG supplemented groups respectively. NG pretreatment inhibited the TNF-α levels (123.76 ± 3.76 pg/mg, 122.62 ± 3.41 pg/mg and 121.51 ± 2.61 pg/mg vs 134.24 ± 4.78 pg/mg, P < 0.05) compared to AA group, respectively. Interleukins, IL-1ß and IL-6 levels were also decreased in NG50 + AA (314.37 ± 16.31 pg/mg and 292.58 ± 23.68 pg/mg, P < 0.05) and NG100 + AA (416.72 ± 49.62 pg/mg and 407.96 ± 43.87 pg/mg, P < 0.05) when compared to AA (352.46 ± 8.58 pg/mg and 638.58 ± 115.98 pg/mg) group. Similar decrease (P < 0.05) was seen in PGE2 and NO values when compared to AA group. The group pretreated with MES, as a reference drug, showed significant (P < 0.01) protection against the changes induced in colon tissue by AA administration respectively. CONCLUSION: In present study, NG produced antioxidant and anti-inflammatory effects demonstrating protective effect in inflammatory bowel disease.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Colitis, Ulcerative/prevention & control , Flavanones/therapeutic use , Acetic Acid , Animals , Anti-Ulcer Agents/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Drug Evaluation, Preclinical , Flavanones/pharmacology , Intestinal Mucosa/drug effects , Male , Rats , Rats, Wistar
20.
Pharm Biol ; 50(12): 1542-50, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22978267

ABSTRACT

CONTEXT: Gymnema sylvestre (GS) R. Br. (Gymnema) (Asclepiadaceae) has been used from ancient times as a folk medicine for the treatment of diabetes, obesity, urinary disorder, and stomach stimulation. OBJECTIVE: The present study was designed to investigate the effects of G. sylvestre leaves ethanol extract on gastric mucosal injury in rats. MATERIALS AND METHODS: Gastric mucosal damage was induced by 80% ethanol in 36 h fasted rats. The effect of G. sylvestre on gastric secretions induced in Shay rats was estimated. In stomach, wall mucus, non-protein sulfhydryl groups (NP-SH), malondialdehyde (MDA), total proteins and nucleic acids levels were estimated. Histopathological changes were observed. RESULTS: G. sylvestre pretreatment at doses of 100, 200 and 400 mg/kg provided 27, 49, and 63% protection against the ulcerogenic effect of ethanol, respectively. Pylorus ligation accumulated 10.24 mL gastric secretions with 66.56 mEq of acidity in control rats. Pretreatment with G. sylvestre significantly inhibited the secretions volume and acidity in dose-dependent manner. Ethanol caused significant depletion in stomach-wall mucus (p < 0.001), total proteins (p < 0.01), nucleic acids (p < 0.001), and NP-SH (p < 0.001) levels. Pretreatment with G. sylvestre showed protection against these depleted levels in dose-dependent manner. The MDA levels increased from 19.02 to 29.22 nmol/g by ethanol ingestion and decreased with G. sylvestre pretreatments in dose-dependent manner. CONCLUSION: The protective effect of G. sylvestre observed in the present study is attributed to its effect on mucus production, increase in nucleic acid and NP-SH levels, which appears to be mediated through its free radical scavenging ability and/or possible cytoprotective properties.


Subject(s)
Anti-Ulcer Agents/pharmacology , Ethanol , Gastric Mucosa/drug effects , Gymnema sylvestre , Plant Extracts/pharmacology , Stomach Ulcer/prevention & control , Animals , Anti-Ulcer Agents/isolation & purification , Cytoprotection , DNA/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Gastric Acid/metabolism , Gastric Acidity Determination , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Gymnema sylvestre/chemistry , Hydrogen-Ion Concentration , Male , Malondialdehyde/metabolism , Mucus/metabolism , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Plant Leaves , Plants, Medicinal , RNA/metabolism , Rats , Rats, Wistar , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL