Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biomed Res Int ; 2022: 4987929, 2022.
Article in English | MEDLINE | ID: mdl-36325499

ABSTRACT

Medicinal plants are used to control and remediate oxidative stress related diseases caused by free radicals. Thus, these plants find their use as remedy. Moringa oleifera is an extremely valued plant for its medicinal properties. Herein, two indigenously produced accessions of Moringa oleifera seeds [originated from Multan (M-Mln) and India (PKM1)] were investigated for their antioxidant properties by 2.2-Diphenyl-1picrylhydrazyl (DPPH) assay, total phenolics content and total flavonoids content. The presence of various phenolics as well as flavonoids was further confirmed by high performance liquid chromatography. Moreover, fourier transform infrared spectroscopy detected the presence of various functional groups. In conclusion, these findings revealed that the methanol extract of M-Mln variety seeds showed high antioxidant potential, having IC50 value of 84 µg/ml. While, hexane extract of PKM1 showed least activity. The methanol extract of M-Mln was found to show highest total phenolics content as 33.83 ± 1.19 mg GAE/g. The methanol extract of M-Mln was found to show highest total flavonoids content as 76.07 ± 1.10 mg CAE/g. The hexane extract of PKM1 was found to show least total flavonoids content as 22.47 ± 1.70 mg CAE/g. The detection of phenolics (ferulic acid, caffeic acid, chlorogenic acid, coumaric acid, and gallic acid) as well as flavonoids (catechin and quercetin) revealed the potential of methanol extracts of both varieties as a good source of antioxidants. The results indicated the importance of seed extracts in the treatment of oxidative stress related diseases. In future, the use of natural antioxidants will prevent the progression of diseases.


Subject(s)
Moringa oleifera , Moringa oleifera/chemistry , Antioxidants/chemistry , Hexanes , Methanol , Plant Extracts/chemistry , Seeds/chemistry , Flavonoids/analysis , Phenols/analysis , Plant Leaves/chemistry
2.
ACS Omega ; 7(37): 33408-33422, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36157758

ABSTRACT

Scaffold architecture in the sectors of biotechnology and drug discovery research include scaffold hopping and molecular modelling techniques and helps in searching for potential drug candidates containing different core structures using computer-based software, which greatly aids medicinal and pharmaceutical chemistry. Going ahead, the computational method of scaffold architecture is thought to produce new scaffolds, and the method is capable of helping search engines toward producing new scaffolds that are likely to represent potent compounds with high therapeutic applications, which is a possibility in this case as well. Here we probate a different interactive design by natural product hopping, molecular modelling, pharmacophore modelling, modification, and combination of the phytoconstituents present in different medicinal plants for developing a pharmacophore-guided good drug candidate for the variants of SARS-CoV-2 or Covid 19. In the modern era, these approaches are carried out at every level of development of scaffold queries, which are increasingly summarized from chemical structures. In this context, we report on a successfully designed drug-like candidate having a high-binding-affinity "compound SLP" by understanding the relationships between the compounds' pharmacophores, scaffold functional groups, and biological activities beyond their individual applications that abide by Lipinski's rule of five, Ghose rule, Veber rule etc. The new scaffold generated by altering the core of the known phyto-compounds holds a good predicted ADMET profile and is examined with iMODS server to check the molecular dynamics simulation with normal mode analysis (NMA). The scaffold's three-dimensional (3D) structure yields a searchable natural product koenimbine from a conformer database having good ADMET property and high availability in spice Murraya koenigii leaves. M. koenigii leaves are easily available in the market, and might ensure the immunity, good health, and well-being of people if affected with any of the variants of Covid 19. The cell viability studies of koenimbine on murine colorectal carcinoma cell line (CT-26) showed no toxicity on normal mice lymphocyte cells (MLCs). The anticancer mechanism of koenimbine was displayed by its enhanced capacity to produce intercellular reactive oxygen species (ROS) in the colorectal carcinoma cell line.

3.
ACS Omega ; 7(51): 48572-48582, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591129

ABSTRACT

Clerodin was isolated from the medicinal plant Clerodendrum infortunatum, and CSD search showed the first crystal structure of clerodin by a single-crystal X-ray diffraction study. We checked its binding potential with target proteins by docking and conducted network pharmacology analysis, ADMET analysis, in silico pathway analysis, normal mode analysis (NMA), and cytotoxic activity studies to evaluate clerodin as a potential anticancer agent. The cell viability studies of clerodin on the human breast carcinoma cell line (MCF-7) showed toxicity on MCF-7 cells but no toxicity toward normal human lymphocyte cells (HLCs). The anticancer mechanism of clerodin was validated by its enhanced capacity to produce intracellular reactive oxygen species (ROS) and to lower the reduced glutathione content in MCF-7 cells.

4.
Mol Divers ; 25(3): 1979-1997, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33844135

ABSTRACT

Worldwide coronavirus disease 2019 (COVID-19) outbreak is still threatening global health since its outbreak first reported in the late 2019. The causative novel virus has been designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although COVID-19 emergent with significant mortality, there is no availability of definite treatment measures. It is now extremely desirable to identify potential chemical entities against SARS-CoV-2 for the treatment of COVID-19. In the present study, a state-of-art virtual screening protocol was implemented on three anti-viral specific chemical libraries against SARS-CoV-2 main protease (Mpro). Particularly, viewing the large-scale biological role of Mpro in the viral replication process it has been considered as a prospective anti-viral drug target. Herein, on collected 79,892 compounds, hierarchical multistep docking followed by relative binding free energy estimation has been performed. Thereafter, implying a user-defined XP-dock and MM-GBSA cut-off scores as -8.00 and -45.00 kcal/mol, chemical space has been further reduced. Exhaustive molecular binding interactions analyses and various pharmacokinetics profiles assessment suggested four compounds (ChemDiv_D658-0159, ChemDiv_F431-0433, Enamine_Z3019991843 and Asinex_LAS_51389260) as potent inhibitors/modulators of SARS-CoV-2 Mpro. In-depth protein-ligand interactions stability in the dynamic state has been evaluated by 100 ns molecular dynamics (MD) simulation studies along with MM-GBSA-based binding free energy estimations of entire simulation trajectories that have revealed strong binding affinity of all identified compounds towards Mpro. Hence, all four identified compounds might be considered as promising candidates for future drug development specifically targeting the SARS-CoV-2 Mpro; however, they also need experimental assessment for a better understanding of molecular interaction mechanisms.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Computer Simulation , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Drug Evaluation, Preclinical , Molecular Dynamics Simulation , Protein Conformation , SARS-CoV-2/drug effects , Thermodynamics
5.
Arch Biochem Biophys ; 700: 108771, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33485847

ABSTRACT

In the current study, a structure-based virtual screening paradigm was used to screen a small molecular database against the Non-structural protein 15 (Nsp15) endoribonuclease of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is the causative agent of the recent outbreak of coronavirus disease 2019 (COVID-19) which left the entire world locked down inside the home. A multi-step molecular docking study was performed against antiviral specific compounds (~8722) collected from the Asinex antiviral database. The less or non-interacting molecules were wiped out sequentially in the molecular docking. Further, MM-GBSA based binding free energy was estimated for 26 compounds which shows a high affinity towards the Nsp15. The drug-likeness and pharmacokinetic parameters of all 26 compounds were explored, and five molecules were found to have an acceptable pharmacokinetic profile. Overall, the Glide-XP docking score and Prime-MM-GBSA binding free energy of the selected molecules were explained strong interaction potentiality towards the Nsp15 endoribonuclease. The dynamic behavior of each molecule with Nsp15 was assessed using conventional molecular dynamics (MD) simulation. The MD simulation information was strongly favors the Nsp15 and each identified ligand stability in dynamic condition. Finally, from the MD simulation trajectories, the binding free energy was estimated using the MM-PBSA method. Hence, the proposed final five molecules might be considered as potential Nsp15 modulators for SARS-CoV-2 inhibition.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , COVID-19/metabolism , Databases, Chemical , Drug Evaluation, Preclinical , Endoribonucleases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , In Vitro Techniques , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , User-Computer Interface , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL