Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Small Methods ; 6(12): e2200916, 2022 12.
Article in English | MEDLINE | ID: mdl-36319445

ABSTRACT

Due to the limited heating efficiency of available magnetic nanoparticles, it is difficult to achieve therapeutic temperatures above 44 °C in relatively inaccessible tumors during magnetic hyperthermia following systemic administration of nanoparticles at clinical dosage (≤10 mg kg-1 ). To address this, a method for the preparation of magnetic nanoparticles with ultrahigh heating capacity in the presence of an alternating magnetic field (AMF) is presented. The low nitrogen flow rate of 10 mL min-1 during the thermal decomposition reaction results in cobalt-doped nanoparticles with a magnetite (Fe3 O4 ) core and a maghemite (γ-Fe2 O3 ) shell that exhibit the highest intrinsic loss power reported to date of 47.5 nH m2 kg-1 . The heating efficiency of these nanoparticles correlates positively with increasing shell thickness, which can be controlled by the flow rate of nitrogen. Intravenous injection of nanoparticles at a low dose of 4 mg kg-1 elevates intratumoral temperatures to 50 °C in mice-bearing subcutaneous and metastatic cancer grafts during exposure to AMF. This approach can also be applied to the synthesis of other metal-doped nanoparticles with core-shell structures. Consequently, this method can potentially be used for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Neoplasms , Mice , Animals , Magnetite Nanoparticles/therapeutic use , Hyperthermia, Induced/methods , Heating , Magnetic Fields , Hyperthermia , Neoplasms/therapy , Nitrogen
2.
Bioengineering (Basel) ; 9(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36354542

ABSTRACT

Osteoporosis, a chronic bone disorder, is one of the leading causes of fracture and morbidity risk. Numerous medicinally important herbs have been evaluated for their efficacy in improving bone mass density in exhaustive preclinical and limited clinical studies. Nigella sativa L. has been used as local folk medicine, and traditional healers have used it to manage various ailments. Its reported beneficial effects include controlling bone and joint diseases. The present manuscript aimed to provide a sound discussion on the pharmacological evidence of N. sativa and its active constituent, thymoquinone, for its utility in the effective management of osteoporosis. N. sativa is reported to possess anti-IL-1 and anti-TNF-α-mediated anti-inflammatory effects, leading to positive effects on bone turnover markers, such as alkaline phosphatase and tartrate-resistant acid phosphatase. It is reported to stimulate bone regeneration by prompting osteoblast proliferation, ossification, and decreasing osteoclast cells. Thymoquinone from N. sativa has exhibited an antioxidant effect on bone tissue by reducing the FeNTA-induced oxidative stress. The present manuscript highlights phytochemistry, pharmacological effect, and the important mechanistic perspective of N. sativa and its active constituents for the management of osteoporosis. Further, it also provides sound discussion on the utilization of a nanotechnology-mediated drug delivery approach as a promising strategy to improve the therapeutic performance of N. sativa and its active constituent, thymoquinone, in the effective management of osteoporosis.

3.
Molecules ; 27(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35889432

ABSTRACT

Helicobacter pylori (H. pylori) is a global health threat, and the World Health Organization has included H. pylori among 12 bacterial species that require high priority future strategies for the development of new antibiotics due mainly to its high rates of resistance. Metallic nanoparticles are known for their antimicrobial properties. The FDA (Food and Drug Administration) has approved zinc oxide nanoparticles (ZnONPs) as biocompatible antimicrobials. Green synthesis of ZnONPs was performed based on Oak galls extract (OGE) and was characterized by UV, IR, DLS, TEM, and SEM measurements. In addition, LC-MS/MS was used for the identification of OGE constituents. A checkerboard assay was used to evaluate the activity of synthesized Qi-ZnONPs and OGE against H. pylori, and their synergistic effects with amoxicillin were evaluated. LC-MS/MS analyses identified 20 compounds as major gallic acid conjugates. The ZnONPs had average particle sizes of 5.5 nm (DLS) and 7.99 nm (TEM). Both OGE and Qi-ZnONPs exhibited moderate activity against H. pylori. Amoxicillin and Qi-ZnONPs combinations (1:2 and 1:4 amoxicillin:/Qi-ZnONPs) significantly decreased the MIC90 by two-fold and four-fold, respectively, and FIC values for the combinations were more significant than with OGE alone. OGE is rich in phenolics. The synergism between Qi-ZnONPs and amoxicillin can provide an alternative safe agent of low cost to combat H. Pylori infections.


Subject(s)
Anti-Infective Agents , Helicobacter pylori , Metal Nanoparticles , Nanoparticles , Quercus , Zinc Oxide , Amoxicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Chromatography, Liquid , Plant Extracts/pharmacology , Tandem Mass Spectrometry , Zinc Oxide/pharmacology
4.
Small ; 18(24): e2107808, 2022 06.
Article in English | MEDLINE | ID: mdl-35434932

ABSTRACT

Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.


Subject(s)
Endometriosis , Hyperthermia, Induced , Magnetite Nanoparticles , Nanoparticles , Animals , Contrast Media , Endometriosis/therapy , Female , Heating , Humans , Hyperthermia, Induced/methods , Magnetic Fields , Mice , Vascular Endothelial Growth Factor A
5.
Molecules ; 26(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073447

ABSTRACT

Food preservatives such as NaNO2, which are widely used in human food products, undoubtedly affect, to some extent, human organs and health. For this reason, there is a need to reduce the hazards of these chemical preservatives, by replacing them with safe natural bio-preservatives, or adding them to synthetic ones, which provides synergistic and additive effects. The Citrus genus provides a rich source of such bio-preservatives, in addition to the availability of the genus and the low price of citrus fruit crops. In this study, we identify the most abundant flavonoids in citrus fruits (hesperidin) from the polar extract of mandarin peels (agro-waste) by using spectroscopic techniques, as well as limonene from the non-polar portion using GC techniques. Then, we explore the synergistic and additive effects of hesperidin from total mandarin extract with widely used NaNO2 to create a chemical preservative in food products. The results are promising and show a significant synergistic and additive activity. The combination of mandarin peel extract with NaNO2 had synergistic antibacterial activity against B. cereus, Staph. aureus, E. coli, and P. aeruginosa, while hesperidin showed a synergistic effect against B. cereus and P. aeruginosa and an additive effect against Staph. aureus and E. coli. These results refer to the ability of reducing the concentration of NaNO2 and replacing it with a safe natural bio-preservative such as hesperidin from total mandarin extract. Moreover, this led to gaining benefits from their biological and nutritive values.


Subject(s)
Anti-Bacterial Agents/analysis , Citrus/chemistry , Food Contamination/prevention & control , Hesperidin/chemistry , Sodium Nitrite/chemistry , Antioxidants/analysis , Bacillus cereus , Drug Synergism , Escherichia coli , Flavonoids/chemistry , Food Preservatives , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Plant Extracts/chemistry , Pseudomonas aeruginosa , Staphylococcus aureus
6.
J Vasc Interv Radiol ; 30(9): 1480-1486.e2, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31202675

ABSTRACT

PURPOSE: To assess selective accumulation of biodegradable nanoparticles within hepatic tumors after transarterial delivery for in vivo localization and combinatorial phototherapy. MATERIALS AND METHODS: A VX2 hepatic tumor model was used in New Zealand white rabbits. Transarterial delivery of silicon naphthalocyanine biodegradable nanoparticles was performed using a microcatheter via the proper hepatic artery. Tumors were exposed via laparotomy, and nanoparticles were observed by near-infrared (NIR) fluorescence imaging. For phototherapy, a handheld NIR laser (785 nm) at 0.6 W/cm2 was used to expose tumor or background liver, and tissue temperatures were assessed with a fiberoptic temperature probe. Intratumoral reactive oxygen species formation was assessed using a fluorophore (2',7'-dichlorodihydrofluorescein diacetate). RESULTS: Nanoparticles selectively accumulated within viable tumor by NIR fluorescence. Necrotic portions of tumor did not accumulate nanoparticles, consistent with a vascular distribution. NIR-dependent heat generation was observed with nanoparticle-containing tumors, but not in background liver. No heat was generated in the absence of NIR laser light. Reactive oxygen species were formed in nanoparticle-containing tumors exposed to NIR laser light, but not in background liver treated with NIR laser or in tumors in the absence of NIR light. CONCLUSIONS: Biodegradable nanoparticle delivery to liver tumors from a transarterial approach enabled selective in vivo tumor imaging and combinatorial phototherapy.


Subject(s)
Contrast Media/administration & dosage , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Nanoparticles , Optical Imaging/methods , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Silanes/administration & dosage , Theranostic Nanomedicine/methods , Animals , Cell Line, Tumor , Female , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Pilot Projects , Predictive Value of Tests , Rabbits , Reactive Oxygen Species/metabolism
7.
ACS Nano ; 13(6): 6383-6395, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31082199

ABSTRACT

Despite its promising therapeutic potential, nanoparticle-mediated magnetic hyperthermia is currently limited to the treatment of localized and relatively accessible cancer tumors because the required therapeutic temperatures above 40 °C can only be achieved by direct intratumoral injection of conventional iron oxide nanoparticles. To realize the true potential of magnetic hyperthermia for cancer treatment, there is an unmet need for nanoparticles with high heating capacity that can efficiently accumulate at tumor sites following systemic administration and generate desirable intratumoral temperatures upon exposure to an alternating magnetic field (AMF). Although there have been many attempts to develop the desired nanoparticles, reported animal studies reveal the challenges associated with reaching therapeutically relevant intratumoral temperatures following systemic administration at clinically relevant doses. Therefore, we developed efficient magnetic nanoclusters with enhanced heating efficiency for systemically delivered magnetic hyperthermia that are composed of cobalt- and manganese-doped, hexagon-shaped iron oxide nanoparticles (CoMn-IONP) encapsulated in biocompatible PEG-PCL (poly(ethylene glycol)- b-poly(ε-caprolactone))-based nanocarriers. Animal studies validated that the developed nanoclusters are nontoxic, efficiently accumulate in ovarian cancer tumors following a single intravenous injection, and elevate intratumoral temperature up to 44 °C upon exposure to safe and tolerable AMF. Moreover, the obtained results confirmed the efficiency of the nanoclusters to generate the required intratumoral temperature after repeated injections and demonstrated that nanocluster-mediated magnetic hyperthermia significantly inhibits cancer growth. In summary, this nanoplatform is a milestone in the development of systemically delivered magnetic hyperthermia for the treatment of cancer tumors that are difficult to access for intratumoral injection.


Subject(s)
Hyperthermia, Induced/methods , Magnetic Fields , Magnetite Nanoparticles/chemistry , Nanoconjugates/chemistry , Animals , Cell Line, Tumor , Female , Ferric Compounds/chemistry , Humans , Lactones/chemistry , Magnetite Nanoparticles/therapeutic use , Mice , Neoplasms, Experimental/therapy , Polyethylene Glycols/chemistry
8.
Theranostics ; 8(3): 767-784, 2018.
Article in English | MEDLINE | ID: mdl-29344305

ABSTRACT

Fluorescence image-guided surgery combined with intraoperative therapeutic modalities has great potential for intraoperative detection of oncologic targets and eradication of unresectable cancer residues. Therefore, we have developed an activatable theranostic nanoplatform that can be used concurrently for two purposes: (1) tumor delineation with real-time near infrared (NIR) fluorescence signal during surgery, and (2) intraoperative targeted treatment to further eliminate unresected disease sites by non-toxic phototherapy. Methods: The developed nanoplatform is based on a single agent, silicon naphthalocyanine (SiNc), encapsulated in biodegradable PEG-PCL (poly (ethylene glycol)-b-poly(ɛ-caprolactone)) nanoparticles. It is engineered to be non-fluorescent initially via dense SiNc packing within the nanoparticle's hydrophobic core, with NIR fluorescence activation after accumulation at the tumor site. The activatable nanoplatform was evaluated in vitro and in two different murine cancer models, including an ovarian intraperitoneal metastasis-mimicking model. Furthermore, fluorescence image-guided surgery mediated by this nanoplatform was performed on the employed animal models using a Fluobeam® 800 imaging system. Finally, the phototherapeutic efficacy of the developed nanoplatform was demonstrated in vivo. Results: Our in vitro data suggest that the intracellular environment of cancer cells is capable of compromising the integrity of self-assembled nanoparticles and thus causes disruption of the tight dye packing inside the hydrophobic cores and activation of the NIR fluorescence. Animal studies demonstrated accumulation of activatable nanoparticles at the tumor site following systemic administration, as well as release and fluorescence recovery of SiNc from the polymeric carrier. It was also validated that the developed nanoparticles are compatible with the intraoperative imaging system Fluobeam® 800, and nanoparticle-mediated image-guided surgery provides successful resection of cancer tumors. Finally, in vivo studies revealed that combinatorial phototherapy mediated by the nanoparticles could efficiently eradicate chemoresistant ovarian cancer tumors. Conclusion: The revealed properties of the activatable nanoplatform make it highly promising for further application in clinical image-guided surgery and combined phototherapy, facilitating a potential translation to clinical studies.


Subject(s)
Neoplasms, Experimental/therapy , Phototherapy/methods , Spectroscopy, Near-Infrared/methods , Surgery, Computer-Assisted/methods , Theranostic Nanomedicine/methods , Animals , Female , Fluorescent Dyes/pharmacokinetics , HEK293 Cells , Humans , Lactones/chemistry , Mice , Mice, Nude , Nanoparticles/chemistry , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/surgery , Polyethylene Glycols/chemistry , Porphyrins/pharmacokinetics
9.
Nanomedicine ; 13(3): 955-963, 2017 04.
Article in English | MEDLINE | ID: mdl-27884637

ABSTRACT

This study represents a novel phototheranostic nanoplatform based on the near-infrared (NIR) heptamethine cyanine dye, IR775, which is capable of concurrent real-time fluorescence imaging and cancer eradication with combinatorial phototherapy. To achieve water solubility and enhance tumor delivery, the hydrophobic IR775 dye was loaded into a biocompatible polymeric nanoparticle with a diameter of ~40nm and slightly negative surface charge (-2.34mV). The nanoparticle-encapsulated hydrophobic IR775 dye (IR775-NP) is characterized by an enhanced fluorescence quantum yield (16%) when compared to the water soluble analogs such as ICG (2.7%) and IR783 (8%). Furthermore, the developed IR-775-NP efficiently generates both heat and reactive oxygen species under NIR light irradiation, eradicating cancer cells in vitro. Finally, animal studies revealed that the IR775-NP accumulates in cancer tumors after systemic administration, efficiently delineates them with NIR fluorescence signal and completely eradicates chemo resistant cancer tissue after a single dose of combinatorial phototherapy.


Subject(s)
Fluorescent Dyes/pharmacokinetics , Fluorescent Dyes/therapeutic use , Indoles/pharmacokinetics , Indoles/therapeutic use , Ovarian Neoplasms/therapy , Phototherapy/methods , Theranostic Nanomedicine/methods , Animals , Carbocyanines/pharmacokinetics , Carbocyanines/therapeutic use , Cell Line, Tumor , Female , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/analysis , Humans , Indoles/administration & dosage , Indoles/analysis , Mice , Nanoparticles/administration & dosage , Nanoparticles/analysis , Optical Imaging/methods , Ovarian Neoplasms/diagnostic imaging , Ovary/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL