Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Metabolomics ; 16(1): 11, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31925564

ABSTRACT

INTRODUCTION: Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported. OBJECTIVES: In this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD. METHODS: DESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6). RESULTS: Multivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P < 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m/z's in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls. CONCLUSION: Results from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.


Subject(s)
Diabetic Nephropathies/metabolism , Kidney Tubules, Proximal/metabolism , Metabolome , Mitochondrial Membranes/metabolism , Animals , Cardiolipins/metabolism , Computational Biology , Fatty Acids, Omega-3/metabolism , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Pseudouridine/metabolism , Spectrometry, Mass, Electrospray Ionization
2.
J Nat Prod ; 81(4): 758-767, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29498278

ABSTRACT

It is a common problem in natural product therapeutic lead discovery programs that despite good bioassay results in the initial extract, the active compound(s) may not be isolated during subsequent bioassay-guided purification. Herein, we present the concept of bioactive molecular networking to find candidate active molecules directly from fractionated bioactive extracts. By employing tandem mass spectrometry, it is possible to accelerate the dereplication of molecules using molecular networking prior to subsequent isolation of the compounds, and it is also possible to expose potentially bioactive molecules using bioactivity score prediction. Indeed, bioactivity score prediction can be calculated with the relative abundance of a molecule in fractions and the bioactivity level of each fraction. For that reason, we have developed a bioinformatic workflow able to map bioactivity score in molecular networks and applied it for discovery of antiviral compounds from a previously investigated extract of Euphorbia dendroides where the bioactive candidate molecules were not discovered following a classical bioassay-guided fractionation procedure. It can be expected that this approach will be implemented as a systematic strategy, not only in current and future bioactive lead discovery from natural extract collections but also for the reinvestigation of the untapped reservoir of bioactive analogues in previous bioassay-guided fractionation efforts.


Subject(s)
Biological Products/chemistry , Biological Assay/methods , Drug Discovery/methods , Euphorbia/chemistry , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL