Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemosphere ; 309(Pt 1): 136622, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36181837

ABSTRACT

Lubricants operate as antifriction media, preserving machine reliability, facilitating smooth operation, and reducing the likelihood of frequent breakdowns. The petroleum-based reserves are decreasing globally, leading to price increases and raising concerns about environmental degradation. The researchers are concentrating their efforts on developing and commercializing an environmentally friendly lubricant produced from renewable resources. Biolubricants derived from nonedible vegetable oils are environmentally favorable because of their non-toxicity, biodegradability, and close to net zero greenhouse gas emissions. The demand for bio lubricants in industry and other sectors is increasing due to their non-toxic, renewable, and environmentally friendly nature. Good lubrication, anti-corrosion, and high flammability are characteristic properties of vegetable oils due to their unique structure. This study presents several key properties of nonedible oils that are used to produce lubricants via the transesterification process. Bibliometric analysis is also performed, which provides us with a better understanding of previous studies related to the production of bio lubricants from the transesterification process. Only 371 published documents in the Scopus database were found to relate to the production of bio lubricants using the transesterification process. The published work was mostly dominated by research articles (286; 77.088%). Significant development can be seen in recent years, with the highest occurrence in 2021, reaching 68 publications accounting for 18.38% of the total documents. In the second step, (i) the authors with the most number of publications; (ii) journals with the most productions; (iii) most productive countries; and (iv) the authors' most frequently used keywords were evaluated. These results will provide a pathway for researchers interested in this field. Lastly, recommendation is made on research gaps to device possible strategies for its commercialization.


Subject(s)
Greenhouse Gases , Petroleum , Reproducibility of Results , Lubricants/chemistry , Plant Oils
2.
Chemosphere ; 286(Pt 2): 131730, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34364231

ABSTRACT

Coffee is a globally consumed beverage that produces a substantial amount of valuable organic waste known as spent coffee grounds (SCG). Although SCG is a non-edible biomass, research initiatives focused on valorizing/utilizing its organic content, protecting the environment, and reducing the high oxygen demand required for its natural degradation. The integration with biorefinery in general and with pyrolysis process in specific is considerered the most successful solid waste management strategy of SCG that produce energy and high-value products. This paper aims at providing a quantitative analysis and discussion of research work done over the last 20 years on SCG as a feedstock in the circular bioeconomy (CBE). Management stratigies of SCG have been thoroughly reviewed and pyrolysis process has been explored as a novel technology in CBE. Results revealed that explored articles belong to Chemical, physical., biological and environmental science branches, with Energy & Fuels as the most reporting themes. Published works correlate SCG to renewable energy, biofuel, and bio-oil, with pyrolysis as a potential valorization approach. Literature review showed that only one study focused on the pyrolysis of defatted spent coffee grounds (DSCG). The insightful conclusions of this paper could assist in proposing several paths to more economically valorization of SCG through biorefinery, where extracted oil can be converted to biofuels or value-added goods. It was highlighted the importance of focusing on the coupling of SCG with CBE as solid waste managment strategy.


Subject(s)
Coffee , Waste Management , Biofuels , Pyrolysis , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL