Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Pharmaceutics ; 14(2)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35213996

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disorder that threatens human health. Medicinal plants have been a source of wide varieties of pharmacologically active constituents and used extensively as crude extracts or as pure compounds for treating various disease conditions. Thus, the aim of this study is to assess the anti-hyperglycemic and anti-hyperlipidemic effects and the modes of action of the aqueous extracts of the fruits and seeds of Balanites aegyptiaca (B. aegyptiaca) in nicotinamide (NA)/streptozotocin (STZ)-induced diabetic rats. Gas chromatography-mass spectrometry analysis indicated that 3,4,6-tri-O-methyl-d-glucose and 9,12-octadecadienoic acid (Z,Z)- were the major components of the B. aegyptiaca fruit and seed extracts, respectively. A single intraperitoneal injection of STZ (60 mg/kg body weight (b.w.)) 15 min after intraperitoneal NA injection (60 mg/kg b.w.) was administered to induce type 2 DM. After induction was established, the diabetic rats were treated with the B. aegyptiaca fruit and seed aqueous extracts (200 mg/kg b.w./day) via oral gavage for 4 weeks. As a result of the treatments with the B. aegyptiaca fruit and seed extracts, the treated diabetic-treated rats exhibited a significant improvement in the deleterious effects on oral glucose tolerance; serum insulin, and C-peptide levels; liver glycogen content; liver glucose-6-phosphatase and glycogen phosphorylase activities; serum lipid profile; serum free fatty acid level; liver lipid peroxidation; glutathione content and anti-oxidant enzyme (glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase) activities; and the mRNA expression of the adipose tissue expression of the insulin receptor ß-subunit. Moreover, the treatment with fruit and seed extracts also produced a remarkable improvement of the pancreatic islet architecture and integrity and increased the islet size and islet cell number. In conclusion, the B. aegyptiaca fruit and seed aqueous extracts exhibit potential anti-hyperglycemic and anti-hyperlipidemic effects, which may be mediated by increasing the serum insulin levels, decreasing insulin resistance, and enhancing the anti-oxidant defense system in diabetic rats.

2.
Oxid Med Cell Longev ; 2022: 6702773, 2022.
Article in English | MEDLINE | ID: mdl-35178158

ABSTRACT

Doxorubicin (DOX) is an effective anticancer agent with a wide spectrum of activities. However, it has many adverse effects on various organs especially on the liver. Thymol, one of the major components of thyme oil, has biological properties that include anti-inflammatory and antioxidant activities. Thus, this study was designed to examine thyme oil and thymol for their ability to prevent doxorubicin-induced hepatotoxicity in Wistar rats. Hepatotoxicity was induced by an intraperitoneal injection of doxorubicin, at a dose of 2 mg/kg bw/week, for seven weeks. Doxorubicin-injected rats were supplemented with thyme oil and thymol at doses 250 and 100 mg/kg bw, respectively, four times/week by oral gavage for the same period. Treatment of rats with thyme oil and thymol reversed the high serum activities of AST, ALT, and ALP and total bilirubin, AFP, and CA19.9 levels, caused by doxorubicin. Thyme oil and thymol also reduced the high levels of TNF-α and the decreased levels of both albumin and IL-4. These agents ameliorated doxorubicin-induced elevation in hepatic lipid peroxidation and associated reduction in GSH content and GST and GPx activities. Further, the supplementation with thyme oil and thymol significantly augmented mRNA expression of the level of antiapoptotic protein Bcl-2 and significantly downregulated nuclear and cytoplasmic levels of the hepatic apoptotic mediator p53. Thus, thyme oil and thymol successfully counteracted doxorubicin-induced experimental hepatotoxicity via their anti-inflammatory, antioxidant, and antiapoptotic properties.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Doxorubicin/adverse effects , Inflammation/drug therapy , Liver Diseases/drug therapy , Liver Diseases/etiology , Oils, Volatile/therapeutic use , Oxidative Stress/drug effects , Animals , Apoptosis/drug effects , Humans , Liver Diseases/pathology , Male , Oils, Volatile/pharmacology , Plant Oils , Rats , Rats, Wistar , Thymol , Thymus Plant
3.
Biomed Pharmacother ; 145: 112409, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34781148

ABSTRACT

Hepatocellular carcinoma (HCC) has been identified as one of the most deadly malignancies with limited therapeutic efficacy worldwide. However, understanding the molecular mechanisms of crosstalk between signaling pathways in HCC and predicting cancer cell responses to targeted therapeutic interventions remain to be challenge. Thus, in this study, we aimed to evaluate the anticancerous efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally-induced HCC in rats. In vitro investigations were also performed and the anticancer effects against HCC cell lines (HepG2 and Huh7) were confirmed. Wistar rats were given diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4) and were orally treated with STE (200 mg/kg body weight (bw)), Sm (150 mg/kg bw), and Sb (5 mg/kg bw) every other day from the 1st or 16th week to the 25th week of DEN/AAF/CCl4 injection. Treatment with STE, Sm, and Sb inhibited the growth of cancerous lesions in DEN/AAF/CCl4-treated rats. This inhibition was associated with inhibition of Ki-67 expression and repression of HGF/cMet, Wnt/ß-catenin, and PI3K/Akt/mTOR signaling pathways. STE, Sm, and Sb improved liver function biomarkers and tumor markers (AFP, CEA, and CA19.9) and increased total protein and albumin levels in serum. STE, Sm, and Sb treatment was also noted to reduce the hepatic production of lipid peroxides, increase hepatic glutathione content, and induce the activities of hepatic antioxidant enzymes in DEN/AAF/CCl4-treated rats. These results indicate that STE, Sm, and Sb exert anti-HCC effects through multiple pathways, including suppression of Ki-67 expression and HGF/cMet, Wnt/ß-catenin, and PI3K/Akt/mTOR pathways and enhancement of antioxidant defense mechanisms.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms, Experimental/prevention & control , Liver Neoplasms/drug therapy , Plant Extracts/pharmacology , Silybum marianum/chemistry , Animals , Antioxidants/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Hep G2 Cells , Hepatocyte Growth Factor/metabolism , Humans , Liver Neoplasms/pathology , Male , Phosphatidylinositol 3-Kinase/metabolism , Plant Extracts/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/metabolism , Rats , Rats, Wistar , Silybin/isolation & purification , Silybin/pharmacology , Silymarin/isolation & purification , Silymarin/pharmacology , Wnt Signaling Pathway/drug effects
4.
Oxid Med Cell Longev ; 2021: 7665169, 2021.
Article in English | MEDLINE | ID: mdl-34630852

ABSTRACT

The present work was designed to assess the efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally induced renal carcinogenesis in male Wistar rats and their roles in regulating oxidative stress, inflammation, apoptosis, and carcinogenesis. The diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4)-administered rats were orally treated with STE (200 mg/kg b.w.), Sm (150 mg/kg b.w.), and Sb (5 mg/kg b.w.) every other day either from the 1st week or from the 16th week of carcinogen administration to the end of 25th week. The treatments with STE, Sm, and Sb attenuated markers of toxicity in serum, decreased kidney lipid peroxidation (LPO), and significantly reinforced the renal antioxidant armory. The biochemical results were further confirmed by the histopathological alterations. The treatments also led to suppression of proinflammatory mediators such as NF-κß, p65, Iκßα, and IL-6 in association with inhibition of the PI3K/Akt pathway. Furthermore, they activated the expressions of PPARs, Nrf2, and IL-4 in addition to downregulation of apoptotic proteins p53 and caspase-3 and upregulation of antiapoptotic mediator Bcl-2. The obtained data supply potent proof for the efficacy of STE, Sm, and Sb to counteract renal carcinogenesis via alteration of varied molecular pathways.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phytotherapy/methods , Plant Extracts/administration & dosage , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Silybin/administration & dosage , Silybum marianum/chemistry , Silymarin/administration & dosage , Animals , Carcinogenesis/chemically induced , Disease Models, Animal , Kidney Neoplasms/chemically induced , Kidney Neoplasms/prevention & control , Male , Rats , Rats, Wistar
5.
Molecules ; 26(16)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34443529

ABSTRACT

Insects of the order Hymenoptera have a defensive substance that contains many biologically active compounds. Specifically, venom from honeybees (Apis mellifera) contains many enzymes and peptides that are effective against various diseases. Different research papers stated the possibility of using bee venom (a direct bee sting or in an injectable form) in treating several complications; either in vivo or in vitro. Other reports used the active fractions of bee venom clinically or at labratory scale. Many reports and publications have stated that bee venom and its constituents have multiple biological activities including anti-microbial, anti-protozoan, anti-cancer, anti-inflammatory, and anti-arthritic properties. The present review aims to refer to the use of bee venom itself or its fractions in treating several diseases and counteracting drug toxicities as an alternative protocol of therapy. The updated molecular mechanisms of actions of bee venom and its components are discussed in light of the previous updated publications. The review also summarizes the potential of venom loaded on nanoparticles as a drug delivery vehicle and its molecular mechanisms. Finally, the products of bee venom available in markets are also demonstrated.


Subject(s)
Bee Venoms/therapeutic use , Bees/chemistry , Enzymes/chemistry , Pharmaceutical Preparations/chemistry , Allergens/adverse effects , Allergens/chemistry , Animals , Bee Venoms/chemistry , Bee Venoms/enzymology , Humans , Insect Bites and Stings , Peptides/chemistry , Peptides/therapeutic use
6.
Article in English | MEDLINE | ID: mdl-33488761

ABSTRACT

Rheumatoid arthritis (RA) is a disorder triggered by autoimmune reactions and related with chronic inflammation and severe disability. Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs) have shown a hopeful immunomodulatory effect towards repairing cartilage and restoring joint function. Additionally, indomethacin (IMC), a nonsteroidal compound, has been considered as a potent therapeutic agent that exhibits significant antipyretic properties and analgesic effects. The target of the current research is to assess the antiarthritic efficacy of BM-MSCs (106 cells/rat at 1, 6, 12 and 18 days) and IMC (2 mg/kg body weight/day for 3 weeks) either alone or concurrently administered against complete Freund's adjuvant-induced arthritic rats. Changes in paw volume, body weight, gross lesions, and antioxidant defense system, as well as oxidative stress, were assessed. The Th1 cytokine (IL-1ß) serum level and Th2 cytokine (IL-4) and Nrf-2 ankle joint expression were detected. In comparison to normal rats, it was found that the CFA-induced arthritic rats exhibited significant leukocytosis and increase in paw volume, LPO level, RF, and IL-1ß serum levels. In parallel, arthritic rats that received BM-MSCs and/or IMC efficiently exhibited decrease in paw edema, leukocytosis, and enhancement in the antioxidant enzymatic levels of SOD, GPx, GST, and GSH in serum besides upregulation of Nrf-2 and anti-inflammatory IL-4 expression levels in the ankle articular joint. Likewise, these analyses were more evidenced by the histopathological sections and histological score. The data also revealed that the combined administration of BM-MSC and IMC was more potent in suppressing inflammation and enhancing the anti-inflammatory pathway than each agent alone. Thus, it can be concluded that the combined therapy with BM-MSC and IMC may be used as a promising therapeutic choice after assessing their efficacy and safety in human beings with RA, and the antiarthritic effects may be mediated via modulatory effects on Th1/Th2 cytokines, ozidative stress, and Nrf-2.

7.
J Biochem Mol Toxicol ; 28(6): 263-70, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24760747

ABSTRACT

Heart failure (HF) is one of diabetic complications. This work was designed to investigate the possible modulatory effect of curcumin against streptozotocin-induced diabetes and consequently HF in rats. Rats were divided into control, vehicle-treated, curcumin-treated, diabetic-untreated, diabetic curcumin-treated, and diabetic glibenclamide-treated groups. Animal treatment was started 5 days after induction of diabetes and extended for 6 weeks. Diabetic rats showed significant increase in serum glucose, triglycerides, total cholesterol, low-density lipoprotein-cholesterol, very low density lipoprotein-cholesterol, nitric oxide, lactate dehydrogenase, cardiac malondialdehyde, plasma levels of interleukin-6, and tumor necrosis factor-alpha, and also showed marked decrease in serum high-density lipoprotein-cholesterol, cardiac reduced glutathione, and cardiac antioxidant enzymes (catalase, superoxide dismutase, and glutathione-S-transferase). However, curcumin or glibenclamide treatment significantly mitigated such changes. In conclusion, curcumin has a beneficial therapeutic effect in diabetes-induced HF, an effect that might be attributable to its antioxidant and suppressive activity on cytokines.


Subject(s)
Antioxidants/therapeutic use , Curcumin/therapeutic use , Diabetes Mellitus, Experimental/complications , Heart Failure/prevention & control , Animals , Antioxidants/pharmacology , Blood Glucose , Curcumin/pharmacology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Glutathione/metabolism , Glyburide/pharmacology , Glyburide/therapeutic use , Heart Failure/blood , Heart Failure/etiology , Inflammation Mediators/blood , Interleukin-6/blood , L-Lactate Dehydrogenase/blood , Male , Myocardium/metabolism , Myocardium/pathology , Nitric Oxide/blood , Organ Size/drug effects , Oxidative Stress , Rats, Wistar , Streptozocin , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL