Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Colloid Interface Sci ; 472: 145-56, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27031596

ABSTRACT

ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 µg/ml and 2300, 2700 µg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Aloe , Biofilms/drug effects , Escherichia coli/physiology , Escherichia coli Infections/drug therapy , Green Chemistry Technology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Oxidation-Reduction , Plant Extracts/chemistry , Staphylococcal Infections/drug therapy , Staphylococcus aureus/physiology
2.
PLoS One ; 8(3): e57404, 2013.
Article in English | MEDLINE | ID: mdl-23483909

ABSTRACT

Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3(2-)) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3(2-) to insoluble red elemental selenium (Se(0)) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3(2-) to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3(2-) to elemental red Se(0), a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3(2-) bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point.


Subject(s)
Biological Assay/methods , Biomimetics/methods , Biosensing Techniques/methods , Nanospheres/toxicity , Pseudomonas aeruginosa/metabolism , Selenium/toxicity , Toxicity Tests/methods , Adaptation, Physiological/drug effects , Chromatography, High Pressure Liquid , Culture Media/pharmacology , Extracellular Space/drug effects , Extracellular Space/metabolism , Fluorescence , NAD/metabolism , Oxidation-Reduction/drug effects , Phenazines/metabolism , Principal Component Analysis , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL