Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemosphere ; 310: 136841, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36243088

ABSTRACT

Implication of natural resources for manufacturing of nanoparticles is sustainable, economical and contaminant free approach towards ecological and medical applications. Herein, CeO2 and Ag/CeO2 nanoparticles are green synthesized from Morinda tinctoria plant extract. The phase structure, surface morphology, optical identity, Ce(III) and Ce(IV) valency of the synthesized CeO2 and Ag/CeO2 nanoparticles are explored. The X-ray diffraction analysis indicated the formation of cubic phase CeO2 and cubic silver decorated CeO2 nanoparticles. Fourier transform infrared (FTIR) spectroscopy revealed the metal decoration of CeO2 nanoparticles, metal-oxygen stretching, indicating the plant molecules reduction and stabilization. UV-visible spectroscopy shown the decreased band gap owing to silver modification. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs displayed spherical morphology of the nanoparticles. Elemental composition and sample purity is assessed by energy dispersive spectroscopy (EDS). Double oxidation of Ce, double splitting energy of Ag and lattice oxygen are observed from X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of Ag/CeO2 exposed the enhanced photocatalytic activity up to 94% where CeO2 nanoparticles gave 60% degradation of bromophenol blue (BB). The plasmonic decoration of silver on the ceria surface induced the charge separations and free radical reactions. Moreover, Ag/CeO2 nanoparticles are seen as superior antibacterial agents than CeO2 towards both E.coli and S.aureus. Hence, the silver decorated metal oxide photocatalyst successfully degraded the BB dye and inactivated the bacterial strains. This report established a future research in green synthesis of multipurpose metal nanoparticles.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Metal Nanoparticles/chemistry , Escherichia coli , Spectroscopy, Fourier Transform Infrared , Oxygen , X-Ray Diffraction , Green Chemistry Technology
2.
Mol Divers ; 25(3): 1979-1997, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33844135

ABSTRACT

Worldwide coronavirus disease 2019 (COVID-19) outbreak is still threatening global health since its outbreak first reported in the late 2019. The causative novel virus has been designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although COVID-19 emergent with significant mortality, there is no availability of definite treatment measures. It is now extremely desirable to identify potential chemical entities against SARS-CoV-2 for the treatment of COVID-19. In the present study, a state-of-art virtual screening protocol was implemented on three anti-viral specific chemical libraries against SARS-CoV-2 main protease (Mpro). Particularly, viewing the large-scale biological role of Mpro in the viral replication process it has been considered as a prospective anti-viral drug target. Herein, on collected 79,892 compounds, hierarchical multistep docking followed by relative binding free energy estimation has been performed. Thereafter, implying a user-defined XP-dock and MM-GBSA cut-off scores as -8.00 and -45.00 kcal/mol, chemical space has been further reduced. Exhaustive molecular binding interactions analyses and various pharmacokinetics profiles assessment suggested four compounds (ChemDiv_D658-0159, ChemDiv_F431-0433, Enamine_Z3019991843 and Asinex_LAS_51389260) as potent inhibitors/modulators of SARS-CoV-2 Mpro. In-depth protein-ligand interactions stability in the dynamic state has been evaluated by 100 ns molecular dynamics (MD) simulation studies along with MM-GBSA-based binding free energy estimations of entire simulation trajectories that have revealed strong binding affinity of all identified compounds towards Mpro. Hence, all four identified compounds might be considered as promising candidates for future drug development specifically targeting the SARS-CoV-2 Mpro; however, they also need experimental assessment for a better understanding of molecular interaction mechanisms.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Computer Simulation , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Drug Evaluation, Preclinical , Molecular Dynamics Simulation , Protein Conformation , SARS-CoV-2/drug effects , Thermodynamics
3.
Arch Biochem Biophys ; 700: 108771, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33485847

ABSTRACT

In the current study, a structure-based virtual screening paradigm was used to screen a small molecular database against the Non-structural protein 15 (Nsp15) endoribonuclease of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is the causative agent of the recent outbreak of coronavirus disease 2019 (COVID-19) which left the entire world locked down inside the home. A multi-step molecular docking study was performed against antiviral specific compounds (~8722) collected from the Asinex antiviral database. The less or non-interacting molecules were wiped out sequentially in the molecular docking. Further, MM-GBSA based binding free energy was estimated for 26 compounds which shows a high affinity towards the Nsp15. The drug-likeness and pharmacokinetic parameters of all 26 compounds were explored, and five molecules were found to have an acceptable pharmacokinetic profile. Overall, the Glide-XP docking score and Prime-MM-GBSA binding free energy of the selected molecules were explained strong interaction potentiality towards the Nsp15 endoribonuclease. The dynamic behavior of each molecule with Nsp15 was assessed using conventional molecular dynamics (MD) simulation. The MD simulation information was strongly favors the Nsp15 and each identified ligand stability in dynamic condition. Finally, from the MD simulation trajectories, the binding free energy was estimated using the MM-PBSA method. Hence, the proposed final five molecules might be considered as potential Nsp15 modulators for SARS-CoV-2 inhibition.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , COVID-19/metabolism , Databases, Chemical , Drug Evaluation, Preclinical , Endoribonucleases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , In Vitro Techniques , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , User-Computer Interface , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL