Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Plant Cell Rep ; 42(5): 909-919, 2023 May.
Article in English | MEDLINE | ID: mdl-36894686

ABSTRACT

KEYMESSAGE: CbSE overexpression increased stigmasterol levels and altered plant morphology. The genes upstream and downstream of CbSE were found to be upregulated, which confirms its regulatory role in the saponin biosynthetic pathway. Chlorophytum borivilianum is a high-value medicinal plant with many promising preclinical applications that include saponins as a major active ingredient. Squalene epoxidase (SE) is one of the major rate-limiting enzymes of the saponin biosynthetic pathway. Here, we functionally characterized C. borivilianum SE (CbSE) by over-expressing heterologously in Nicotiana tabacum. The heterologous expression of CbSE resulted in stunted pant growth with altered leaf and flower morphology. Next, RT-qPCR analysis of transgenic plants overexpressing CbSE revealed increased expression levels of Cycloartenol synthase (CAS), Beta amyrin synthase (ßAS), and cytochrome P450 monooxygenase 51 (CYP51) (Cytochrome P450), which encode key enzymes for triterpenoid and phytosterol biosynthesis in C. borivilianum. Further, Methyl Jasmonate (MeJa) treatment upregulated Squalene synthase (SQS), SE, and Oxidosqualene cyclases (OSCs) to a significant level. GC-MS analysis of the leaf and hairy roots of the transformants showed an increased stigmasterol content (0.5-1.0 fold) compared to wild type (WT) plants. These results indicate that CbSE is a rate-limiting gene, which encodes an efficient enzyme responsible for phytosterol and triterpenoid production in C. borivilianum.


Subject(s)
Phytosterols , Saponins , Triterpenes , Nicotiana/genetics , Nicotiana/metabolism , Stigmasterol , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism , Triterpenes/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant
2.
3 Biotech ; 12(9): 194, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35910289

ABSTRACT

A reliable and stable Agrobacterium-mediated genetic transformation system for Artemisia pallens has been developed using cell suspension cultures derived from cotyledon explants. Cotyledon, attached cotyledon, and compound leaves were found to be suitable for the induction of callus among five different types of explants tested. The yellow friable callus derived from attached cotyledon was used to initiate suspension cultures in Suspension Culture Medium (SCM) which was supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) at 2.0 mg L-1 and in combination with different concentrations of Zeatin (ZEA) at 0.25 mg L-1. Two different shock treatments, cold shock (at 4 ℃) for 20 min and heat shock (at 45 ℃) treatment for 5 min, heat shock treatment increased the transformation efficiency. The supplementation of Pluronic F-68 (0.05%) significantly enhanced the transformation efficiency of suspension cultures, whereas Silwet L-77 (0.05%) leads to more browning of the cells and reduced the transformation efficiency. The maximum GUS intensity was recorded with an optimal intensity of blue spots in the transformed cells. The highest GUS fluorometric activity measured was 879.4 ± 113.7 nmol 4MU/mg/min in transformed cell suspension cultures. The hygromycin-resistant calli showed intense blue color in GUS histochemical assay. The transgene integration into the plant genome was confirmed by polymerase chain reaction (PCR) using uidA specific primers in six hygromycin-resistant cell lines. The partial coding sequence of three candidate reference genes, i.e., ADP-ribosylation factor (Arf), ß-actin (Act), and ubiquitin (Ubi), and carotenoid biosynthesis pathway gene, i.e., Phytoene desaturase (Pds) were cloned, sequenced, and submitted to NCBI for the first time. The quantitative mRNA expression of the transgene (uidA) and internal ApPds gene were evaluated in transgenic callus lines. The present Agrobacterium-mediated genetic transformation protocol could help in better understanding of the metabolic pathways of this medicinally important plant and its genetic improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03251-x.

3.
Physiol Mol Biol Plants ; 22(2): 261-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27436917

ABSTRACT

Artemisia pallens is an important medicinal plant. In-vitro regeneration and multiplication of A. pallens have been established using attached cotyledons. Different growth regulators were considered for regeneration of multiple shoots. An average of 36 shoots per explants were obtained by culturing attached cotyledons on Murashige and Skoog's medium containing 2 mg/L BAP and 0.1 mg/L NAA, after 45 days. The shoots were rooted best on half Murashige and Skoog's medium with respect to media containing 1 mg/L IBA or 1 mg/L NAA. Different parameters such as type of bacterial strains, OD600 of bacterial culture, co-cultivation duration, concentration of acetosyringone and explants type were optimized for transient expression of the reporter gene. Agrobacterium tumefaciens harbouring pCambia1301 plasmid carrying ß-glucuronidase as a reporter gene and hygromycin phosphotransferase as plant selectable marker genes were used for genetic transformation of A. pallens. Hygromycin lethality test showed concentration of 15 mg/L were sufficient to inhibit the growth of attached cotyledons and multiple shoot buds of nontransgenics in selection media. Up to 83 % transient transformation was found when attached cotyledons were co-cultivated with Agrobacterium strain AGL1 for 2 days at 22 °C on shoot induction medium. The bacterial growth was eliminated by addition of cefotaxime (200 mg/L) in selection media. T0 transgenic plants were confirmed by GUS histochemical assay and further by polymerase chain reaction (PCR) using uidA and hpt gene specific primers. The study is useful in establishing technological improvement in A. pallens by genetic engineering.

SELECTION OF CITATIONS
SEARCH DETAIL