Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 44(12): 6218-6228, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36547085

ABSTRACT

A polyphenolic component of ginger, 6-gingerol, is widely reported to possess antioxidant, anti-inflammatory and anticancer activities. In the current study, it was aimed to investigate the anticancer effects of 6-gingerol (6-Gin) on azoxymethane (AOM)-induced colon cancer in rats. The results reveal that 6-Gin treatment significantly improves the antioxidant status disturbed by AOM intoxication. The 6-Gin treatment animal group showed enhanced activity of catalase (CAT) (46.6 ± 6.4 vs. 23.3 ± 4.3 U/mg protein), superoxide dismutase (SOD) (81.3 ± 7.6 vs. 60.4 ± 3.5 U/mg protein) and glutathione-S-transferase (GST) (90.3 ± 9.4 vs. 53.8 ± 10 mU/mg protein) (p < 0.05) as compared to the disease control group. Furthermore, the results reveal that AOM significantly enhances the inflammatory response and 6-gingerol potentially attenuates this response, estimated by markers, such as tumor necrosis factor-α (TNF-α) (1346 ± 67 vs. 1023 ± 58 pg/g), C-reactive protein (CRP) (1.12 ± 0.08 vs. 0.92 ± 0.7 ng/mL) and interleukin-6 (IL-6) (945 ± 67 vs. 653 ± 33 pg/g). In addition, the lipid peroxidation estimated in terms of malondialdehyde (MDA) provoked by AOM exposure is significantly reduced by 6-gingerol treatment (167 ± 7.5 vs. 128.3 nmol/g). Furthermore, 6-gingerol significantly maintains the colon tissue architecture disturbed by the AOM treatment. Loss of tumor suppressor protein, phosphatase and tensin homolog (PTEN) expression was noticed in the AOM treated group, whereas in the animals treated with 6-gingerol, the positivity of PTEN expression was high. In conclusion, the current findings advocate the health-promoting effects of 6-gingerol on colon cancer, which might be due to its antioxidant and anti-inflammatory potential.

2.
Biology (Basel) ; 11(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36009841

ABSTRACT

Mycobacterium tuberculosis has seen tremendous success as it has developed defenses to reside in host alveoli despite various host-related stress circumstances. Rv1636 is a universal stress protein contributing to mycobacterial survival in different host-derived stress conditions. Both ATP and cAMP can be bound with the Rv1636, and their binding actions are independent of one another. ß-Amyrin, a triterpenoid compound, is abundant in medicinal plants and has many pharmacological properties and broad therapeutic potential. The current study uses biochemical, biophysical, and computational methods to define the binding of Rv1636 with ß-Amyrin. A substantial interaction between ß-Amyrin and Rv1636 was discovered by molecular docking studies, which helped decipher the critical residues involved in the binding process. VAL60 is a crucial residue found in the complexes of both Rv1636_ß-Amyrin and Rv1636-ATP. Additionally, the Rv1636_ß-Amyrin complex was shown to be stable by molecular dynamics simulation studies (MD), with minimal changes observed during the simulation. In silico observations were further complemented by in vitro assays. Successful cloning, expression, and purification of Rv1636 were accomplished using Ni-NTA affinity chromatography. The results of the ATPase activity assay indicated that Rv1636's ATPase activity was inhibited in the presence of various ß-Amyrin concentrations. Additionally, circular dichroism spectroscopy (CD) was used to examine modifications to Rv1636 secondary structure upon binding of ß-Amyrin. Finally, isothermal titration calorimetry (ITC) advocated spontaneous binding of ß-Amyrin with Rv1636 elucidating the thermodynamics of the Rv1636_ß-Amyrin complex. Thus, the study establishes that ß-Amyrin binds to Rv1636 with a significant affinity forming a stable complex and inhibiting its ATPase activity. The present study suggests that ß-Amyrin might affect the functioning of Rv1636, which makes the bacterium vulnerable to different stress conditions.

3.
Oncol Rep ; 48(1)2022 Jul.
Article in English | MEDLINE | ID: mdl-35699111

ABSTRACT

Cancer is recognized as the leading cause of death worldwide. The hippo signaling pathway regulates organ size by balancing cell proliferation and cell death; hence dysregulation of the hippo pathway promotes cancer­like conditions. miRNAs are a type of non­coding RNA that have been shown to regulate gene expression. miRNA levels are altered in various classes of cancer. Researchers have also uncovered a crosslinking between miRNAs and the hippo pathway, which has been linked to cancer. The components of the hippo pathway regulate miRNA synthesis, and various miRNAs regulate the components of the hippo pathway both positively and negatively, which can lead to cancer­like conditions. In the present review article, the mechanism behind the hippo signaling pathway and miRNAs biogenesis and crosslinks between miRNAs and the hippo pathway, which result in cancer, shall be discussed. Furthermore, the article will cover miRNA­related therapeutics and provide an overview of the development of resistance to anticancer drugs. Understanding the underlying processes would improve the chances of developing effective cancer treatment therapies.


Subject(s)
MicroRNAs , Neoplasms , Hippo Signaling Pathway , Humans , MicroRNAs/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Transcription Factors/genetics
4.
Front Mol Biosci ; 8: 716735, 2021.
Article in English | MEDLINE | ID: mdl-34765641

ABSTRACT

V-domain Ig suppressor of T cell activation (VISTA) is an immune checkpoint and is a type I transmembrane protein. VISTA is linked to immunotherapy resistance, and it is a potential immune therapeutic target, especially for triple-negative breast cancer. It expresses at a high concentration in regulatory T cells and myeloid-derived suppressor cells, and its functional blockade is found to delay tumor growth. A useful medicinal plant database for drug designing (MPD3), which is a collection of phytochemicals from diverse plant families, was employed in virtual screening against VISTA to prioritize natural inhibitors against VISTA. Three compounds, Paratocarpin K (PubChem ID: 14187087), 3-(1H-Indol-3-yl)-2-(trimethylazaniumyl)propanoate (PubChem ID: 3861164), and 2-[(5-Benzyl-4-ethyl-1,2,4-triazol-3-yl)sulfanylmethyl]-5-methyl-1,3,4-oxadiazole (PubChem ID: 6494266), having binding energies stronger than -6 kcal/mol were found to have two common hydrogen bond interactions with VISTA active site residues: Arg54 and Arg127. The dynamics of the compound-VISTA complexes were further explored to infer binding stability of the systems. Results revealed that the compound 14187087 and 6494266 systems are highly stable with an average RMSD of 1.31 Å. Further affirmation on the results was achieved by running MM-GBSA on the MD simulation trajectories, which re-ranked 14187087 as the top-binder with a net binding energy value of -33.33 kcal/mol. In conclusion, the present study successfully predicted natural compounds that have the potential to block the function of VISTA and therefore can be utilized further in experimental studies to validate their real anti-VISTA activity.

SELECTION OF CITATIONS
SEARCH DETAIL