Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Appl Biomater Funct Mater ; 22: 22808000241236020, 2024.
Article in English | MEDLINE | ID: mdl-38462785

ABSTRACT

OBJECTIVE: To investigate the Pinus halepensis extracts and determine its healing and antibacterial effects, and to evaluate the treatment of skin burns. METHODS: Aqueous and ethanolic extracts and topical based on Aleppo pine plant extracts were prepared. Thirty male and female Wistar rats were used to study the cutaneous toxicity of extracts from the bark of P. halepensis. The extracts' healing potential for burn wounds were also assessed by evaluating the clinical and macroscopic aspects of the wounds. The antibacterial activity of crude extracts of P. halepensis as well as its wound healing abilities was verified in this investigation. RESULTS: In animals with acute dermal toxicity, there were no signs of treatment-related toxicity or death. The extracts of these plants could be transformed into phytomedicines for the treatment of infected wounds. The results demonstrated that formulated ointments are successful in treating second-degree burns in rats and may be suitable for the short-term therapeutic treatment of second-degree burns. CONCLUSION: This study successfully answered our problem, regarding the efficacy of our extract for treating second-degree burns in rats. Further studies are needed to confirm these results by identifying the molecules responsible for these activities and examining their mechanism of action.


Subject(s)
Burns , Pinus , Rats , Animals , Rats, Wistar , Wound Healing , Burns/drug therapy , Anti-Bacterial Agents/pharmacology , Skin/injuries
2.
Heliyon ; 9(11): e21222, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053906

ABSTRACT

Lavandula stoechas, a Mediterranean plant, renowned in traditional medicine for its health benefits, is also arousing strong interest associated with its essential oils (EOs) with promising therapeutic properties. The aim of this study was to analyze the chemical composition of the plant, as well as to study its major activities, including antioxidant, anti-diabetic, dermatoprotective, anti-inflammatory, and antibacterial effects, focusing on its major molecules. Using the GC-MS method, the main compounds identified in L. stoechas EO (LSEO) were fenchone (31.81 %) and camphor (29.60 %), followed by terpineol (13.14 %) and menthone (8.96 %). To assess their antioxidant activity, three in vitro methods were used (DPPH, FRAP, and ABTS). The results revealed that LSEO exhibited the best antiradical property (54 ± 62 µg/mL) according to the DPPH test, while fenchone demonstrated the highest antioxidant capacity (87 ± 92 µg/mL) in the FRAP test, and camphor displayed the highest antioxidant capacity (96 ± 32 µg/mL) in the ABTS test. However, these results were lower than those obtained by Trolox used as a reference. In addition, study also explored the anti-diabetic potential of LSEO and its major compounds by evaluating their inhibitory activity towards two digestive enzymes, α-glucosidase and α-amylase. Camphor (76.92 ± 2.43 µg/mL) and fenchone (69.03 ± 2.31 µg/mL) exhibited the best inhibitory activities for α-amylase and α-glucosidase assays, respectively. Interestingly, all elements of the study exerted activities superior to those of acarbose, regardless of the test performed. In contrast, the evaluation of the dermatoprotective potential was carried out in vitro by targeting two enzymes involved in cutaneous processes, tyrosinase and elastase. In this light, fenchone (53.14 ± 3.06 µg/mL) and camphor (48.39 ± 1.92 µg/mL) were the most active against tyrosinase and elastase, respectively. It should be noted that the effect of both molecules, as well as that of LSEO, ranged between 53.14 ± 3.06 and 97.45 ± 5.22 µg/mL, which was significantly lower than the standard, quercetin (IC50 of 246.90 ± 2 0.54 µg/mL) against tyrosinase. Furthermore, the anti-inflammatory potential of these elements has been studied by evaluating their ability to inhibit lipooxygenase (LOX), a class of enzymes involved in the inflammatory process in the human body. As a result, the LSEO demonstrated a remarkable effect with an IC50 of 6.34 ± 1.29 µg/mL, which was almost comparable to the standard, quercetin (IC50 = 3.93 ± 0.45 µg/mL). Concerning the antibacterial potential, we carried out a quantitative analysis of the various products tested, revealing a bactericidal activity of the LSEO against the strain L. monocytogenes ATCC 13932 at a minimum effective concentration (MIC = CMB = 0.25). Overall, LSEOs offer significant potential as a source of natural antioxidants, and antidiabetic and anti-inflammatory agents, as well as dermatoprotective and antibacterial compounds. Its major molecules, fenchone and camphor, showed promising activity in these areas of study, making it a valuable candidate for future research and development in the field of natural medicine.

3.
Heliyon ; 9(9): e19292, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662785

ABSTRACT

Diabetes mellitus (DM) is the most prevalent endocrine disorder. Numerous individual herbs possess anti-diabetic activity. The seeds of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum are traditionally used to manage DM. The ambition of this work was to formulate the poly-herbal granules (PHGs) comprising of these three functional foods and evaluate their in-vitro antioxidant and antidiabetic potential. The dried seed extracts of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum were used in a ratio of 2.5:1:1 to formulate PHGs by wet granulation method. The ratio of extracts was selected on the basis of traditional phytotherapies popularly used by local Hakeems of Pakistan to achieve glycemic control in diabetic patients resistant to traditional allopathic regime of medicine. The flow properties of developed PHGs were evaluated. The UV-Visible spectroscopic, Fourier Transform Infrared (FTIR) and HPLC-DAD of all seed extracts and PHGs were performed. The in-vitro antioxidant DPPH, FRAP, total antioxidant capacity (TAC) and Nitric Oxide (NO) scavenging assays were carried out on PHGs. The in-vitro antidiabetic activity of PHGs was investigated by alpha-amylase and alpha-glucosidase enzyme inhibition activity. The developed PHGs exhibited excellent flow properties. The UV-Vis spectra of all seed extracts and PHGs demonstrated peak at 278 nm showing the presence of flavonoids and phenols. The FTIR spectra confirmed the existence of flavonoids, and phenols along with amines in seed extracts as well as PHGs. The HPLC-DAD test revealed the existence of gallic acid, ascorbic acid, Quercetin-3-(caffeoyldiglucoside)-7-glucoside, Rosmarinic acid, delphinidin-3,5-diglucosides, Kaempferol-3-feruloylsophoroside-7-glucoside and Phloroglucinol in PHGs. The PHGs exhibited IC50 of 51.23, 58.57, 55.41 and 53.13 µg/mL in DPPH assay, FRAP assay, TAC, Nitric oxide scavenging assays respectively. The PHGs also demonstrated IC50 of 49.97 and 36.16 µg/mL in alpha-amylase and in alpha-glucosidase inhibition assays respectively in dose dependent manner. The developed PHGs exhibited an excellent flow property. These exhibit significant in-vitro antioxidant and antidiabetic profile by virtue of flavonoid and phenolic acid derivatives.

4.
Microsc Res Tech ; 86(7): 846-861, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37245116

ABSTRACT

The current study aims to utilize the bacteria Paraclostridium benzoelyticum strain 5610 to synthesize bio-genic silver nanoparticles (AgNPs). Biogenic AgNPs were thoroughly examined using various characterization techniques such as UV-spectroscopy, XRD, FTIR, SEM, and EDX. Synthesis of AgNPs was confirmed by UV-vis analysis resulting in absorption peak at 448.31 nm wavelength. The SEM analysis indicated the morphological characteristics and size of AgNPs which was 25.29 nm. The face centered cubic (FCC) crystallographic structure was confirmed by XRD. Furthermore, FTIR study affirmed the capping of AgNPs by different compounds found in biomass of the Paraclostridium benzoelyticum strain 5610. Later, EDX was used to determine the elemental composition with respective concentration and distribution. Additionally, in the current study the antibacterial, anti-inflammatory, antioxidant, anti-aging, and anti-cancer ability of AgNPs was assessed. The antibacterial activity of AgNPs was tested against four distinct sinusitis pathogens: Haemophilus in-fluenza, Streptococcus pyogenes, Moraxella catarrhalis and Streptococcus pneumonia. AgNPs shows significant inhibition zone against Streptococcus pyogenes 16.64 ± 0.35 followed by 14.32 ± 071 for Moraxella catarrhalis. Similarly, the antioxidant potential was found maximum (68.37 ± 0.55%) at 400 µg/mL and decrease (5.48 ± 0.65%) at 25 µg/mL, hence the significant antioxidant ability was observed. Furthermore, anti-inflammatory activity of AgNPs shows the strongest inhibitory action (42.68 ± 0.62%) for 15-LOX with lowest inhibition activity for COX-2 (13.16 ± 0.46%). AgNPs have been shown to exhibit significant inhibitory actions against the enzyme elastases AGEs (66.25 ± 0.49%), which are followed by AGEs of visperlysine (63.27 ± 0.69%). Furthermore, the AgNPs show high toxicity against HepG2 cell line which shows 53.543% reduction in the cell viability after 24 h of treatment. The anti-inflammatory activity demonstrated a potent inhibitory effect of the bio-inspired AgNPs. Overall, the biogenic AgNPs have the ability to be served for the treatments of anti-aging and also due to their anti-cancer, antioxidant abilities NPs may be a useful therapy choice for a variety of disorders including cancer, bacterial infections and other inflammatory diseases. Moreover, further studies are required in the future to evaluate their in vivo biomedical applications. HIGHLIGHTS: Biogenic synthesis of AgNPs using Paraclostridium benzoelyticum Strain for the first time. FTIR analysis confirmed capping of potent biomolecules which are of great use in applied field especially Nanomedicines. Notable antimicrobial activity against sinusitis bacteria and cytotoxic potential of synthesized AgNPs on in vitro basis produce a new idea shifting us to treat cancerous cell lines.


Subject(s)
Metal Nanoparticles , Silver , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Antioxidants/pharmacology , Bacteria , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glycation End Products, Advanced/pharmacology , Spectroscopy, Fourier Transform Infrared
6.
Saudi J Biol Sci ; 29(10): 103419, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36060112

ABSTRACT

The light and scanning electron microscopic observations were carried out for anatomical features of leaf, pollens and powder.Microscopic studies provide useful information for identification and authentication of adulteration in A. maritima. Nutritional analysis of A. maritima revealed that life fundamental macromolecules such as carbohydrates (49.63 %) crude proteins (13.17 %) and crude fibers (21.06 %) were present in sufficient quantity while crude fats (4.11 %) reported in low quantity. The life essential elements such as Mg (9.472 ± 0.011), Ca (4.152 ± 0.135) and Fe (4.112 ± 0.002) were found in high concentration while heavy metals reported under the safety threshold of WHO. These observations favored A. maritima an alternative of food.Appreciable quantity of phenolics (17.64 ± 0.574) and flavonoids (7.67 ± 0.069) were found while qualitatively active phytochemicals were reported. The FTIR characterization of A. maritima crude powder revealed chromatogram in 3328.61 to 408.68 frequency range and 24 characteristic peaks on the basis of which different compounds of biological importance were classified. HPLC-UV technique quantifiedand identified six phenolic compounds morin,epigallocatechin gallate, catechin hydrate,ellagic acid, pyrogallol andrutin. Identification of compounds through GC-MS chromatogram revealed the presence of 46 compounds in methanolic fraction however 17 compounds of biological importance were selected. In-vitro biological evaluation of A. maritima for antioxidant, antimicrobial, antidiabetic (12.61 ± 0.113 %) and cytotoxic activities (LC50 = 20 µg/ml) suggested that methanolic fractions exhibited the highest activity as compared to chloroform and ethyl acetate fractions. The MIC values of 10 or 15 mg/ml were recorded for most of the fungal pathogens. Antibacterial activity revealed 3.75 mg/ml of MIC values against B. subtilis and 1.87 mg/ml against S. aureus, E. coli and P. aeruginosa. In-vivo biological evaluation revealed thatmaximum inhibition was observed for crude extract at 250 mg/kg body weight. The mechanism underlined in-vivo analgesic responses was carried out which revealed that naloxone (morphine and tramadol antagonist) showed no prominent effect while Glibenclamide pretreatment minutely modified the analgesic action. These observations clearly indicted the absence of opiod receptors and involvement of ATP sensitive potassium channels.

7.
Molecules ; 27(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889490

ABSTRACT

The goal of the research was to explore a new green method used to synthesize silver nanoparticles (Ag NPs) from an aqueous extract of Trigonella incise, which serves as a reducing and stabilizing agent. The obtained results showed an 85% yield of nanoparticles by using 2:5 (v/v) of 5% plant extract with a 0.5 M solution of AgNO3. Different techniques were used to characterize the synthesized Ag NPs, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and UV-visible spectroscopy. The UV-visible spectra of green synthesized silver nanoparticles showed maximum absorption at a wavelength of 440 nm. The FT-IR studies revealed the stretching oscillation frequency of synthesized silver nanoparticles in the absorption band near 860 cm-1. Similarly, the bending and stretching oscillation frequencies of the NH function group were assigned to the band in the 3226 cm-1 and 1647 cm-1 regions. The bending vibration of C-O at 1159 cm-1 confirmed the carbonyl functional group that was also assigned to the small intensity band in the range of 2361 cm-1. The X-ray diffraction analysis of Ag NPs revealed four distinct diffraction peaks at 2θ of 38°, 45°, 65° and 78°, corresponds to (111), (200), (220) and (311) of the face-centered cubic shape. The round shape morphology of Ag NPs with a mean diameter in the range 20-80 nm was analyzed via SEM images. Furthermore, the nanoparticles showed more significant antimicrobial activity against Salmonella typhi (S. typhi) and Staphylococcus aureus (S. aureus) with an inhibition zone of 21.5 mm and 20.5 mm at 6 µg/mL concentrations, respectively, once compared to the standard reference. At concentrations of 2 µg/mL and 4 µg/mL, all of the bacterial strains showed moderate activity, with inhibition zones ranging from 11 mm to 18.5 mm. Even at high concentrations of AgNPs, S. typhi showed maximum resistance. The best antifungal activity was observed by synthesized Ag NPs against Candida albicans (C. albicans) with 21 mm zone of inhibition, as compared to a standard drug which gives 22 mm of inhibition. Therefore, we conclude that the antibacterial and antifungal activities showed satisfactory results from the synthesized Ag NPs.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Trigonella , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/chemistry , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , X-Ray Diffraction
8.
Article in English | MEDLINE | ID: mdl-35754682

ABSTRACT

Phytochemical studies on the alkaloids fraction of the entire plant of Isatis minima Bunge resulted in the alkaloids 1-4 isolation, which were first time isolated from this species. The 1D and 2D NMR spectroscopic data were used to identify their structures, and there was satisfactory compatibility of the data compared to those which were previously published. In the examined compounds 1-4, Isaindigotidione (3) and Isaindigotone (4) were shown as an effective urease inhibitor in such a concentration-dependent way against Jack bean and Bacillus pasteurii urease, with IC50 values 29.03 ± 0.04, 20.04 ± 0.09 and 34.03 ± 0.07, 26.13 ± 0.08 µM, respectively. Compounds 3 and 4 were likewise shown to be an effective inhibitor against α-chymotrypsin, exhibiting IC50 values 16.09 ± 0.07 and 22.01 ± 0.06 µM, correspondingly. The program MOE-Dock was used to perform a molecular docking analysis to confirm probable binding modes of the active complexes of the isolated compounds 1-4 and the crystal structure of urease and α-chymotrypsin enzymes. Compound 3 was the most active, having the highest docking scores against Bacillus pasteurii urease, α-chymotrypsin, and Jack bean (-8.6876), (-7.6647), and (-13.1927) µM, respectively. All four alkaloids (1-4) showed significant urease and protease inhibitory potential and further these activities were confirmed with the help of molecular docking study.

9.
Biomed Res Int ; 2022: 1621372, 2022.
Article in English | MEDLINE | ID: mdl-35757480

ABSTRACT

Green synthesis of nanoparticles has emerged as an effective and environmentally friendly method. Therefore, the current investigation is based on the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extract of Sanvitalia procumbens (S. procumbens) that act as a capping and reducing agent. S. procumbens is a fast-growing shrub and densely available plant and may have potential to synthesize ZnO-NPs. The synthesized ZnO-NPs were characterized by different techniques, including Fourier transform infrared spectroscopy (FT-IR), UV-visible (UV-Vis), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The UV-Vis spectrum at 350 nm revealed an absorption peak for the synthesis of ZnO-NPs. In addition, photoactive biomolecules of the prepared ZnO-NPs were identified by using FT-IR spectroscopy. Furthermore, the spherical geometry of ZnO-NPs was evaluated by SEM images. The synthesized ZnO-NPs were also used to enhance the antidepressant activity and exhibited a remarkable reduction in the time of immobility in tail suspension tests (TST) and forced swim tests (FST), as well as increased the BDNF levels in the brain and plasma. ZnO-NPs have a low risk of biocompatibility (cell visibility) at a concentration of 7 g/mL or below. The nanoparticles were biologically compatible when the concentrations were increased up to 11 µg/mL. It was concluded that ZnO-NPs were investigated as a possible carrier for antidepressant drug delivery into the brain, and their excellent cytotoxic activity was evaluated by using the MTT assay to determine their biocompatibility.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/chemistry , Antidepressive Agents/pharmacology , Antineoplastic Agents/analysis , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Microbial Sensitivity Tests , Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
10.
Article in English | MEDLINE | ID: mdl-35677362

ABSTRACT

Schinus terebinthifolius Raddi. and Schinus molle L. are perennial woody plants belonging to the Anacardiaceae family, widely distributed in the United States, Europe, Asia, and Africa, and they are broadly used for many applications such as in traditional medicine as an antipyretic, analgesic, depurative, and in the treatment of diseases of the urogenital system as well as culinary and ornamental species. Our work aims to study and compare the chemical composition and the antioxidant and insecticidal activity of the essential oils of the leaves and fruits of the two species of the genus Schinus. The essential oils were characterized by a very spicy aromatic odor, and by the abundance of hydrocarbon monoterpenes in the leaves and fruits of Schinus molle (49.70% and 42.65%), unlike the EOs of the fruits of Schinus terebinthifolius which have a high content in hydrocarbon sesquiterpenes (40.57%). Usually, these oils have shown relatively low antioxidant activity was expressed in IC50; especially, the essential oil of the fruits of S. terebinthifolius revealed a concentration of 3.292 ± 2.82 mg/mL. The evaluation of the insecticidal activity gave good results in the method of exposure of adults of Sitophilus oryzae to EOs by contact; thus, the fruits of Schinus molle are more active against this species of beetle than the other essential oil.

11.
Article in English | MEDLINE | ID: mdl-35707468

ABSTRACT

Moroccan folk healers use medicinal plants to treat several diseases including skin burns. The traditional knowledge of wound healing is not common among the general population. Only one ethnobotanical survey was carried out in Rabat, Morocco, to track the traditional use of medicinal plants in wound healing. Therefore, our report aimed to study the medicinal plants used in Taza region to treat wound healing. In total, 218 individuals participated in this survey. More than 40 medicinal plants belonging to 30 botanical families were cited as anti-burn remedies. The most commonly used medicinal plants were Agave sisalana L., Nerium oleander L., Tetraclinis articulata Benth., Lawsonia inermis L., Artemisia herba-alba Asso., and Trigonella foenum-graecum L. Most of the used medicinal plants belong to Asteraceae family. Comparing our results with the previous survey, we noted that twelve plants were reported for the first time as wound healing agents. The ethnomedicinal use showed that plants leaves are the most commonly used parts. Pulverization was the selected method of preparation. The direct application of powder to the burns was the most common way of treatment. Our study revealed, for the first time, the importance of medicinal plants to treat skin burns in Taza region. Our results could be considered as the stepping stone for creating a database of wound healing medicinal plants to promote scientific studies on these plants revealing their constituents and side effects.

12.
Article in English | MEDLINE | ID: mdl-35668783

ABSTRACT

The research work presented in this study is mainly concerned with the bioactivity-directed phytochemical and biological evaluation of Persea duthiei. Persea duthiei is a typical medicinal plant used to treat a variety of ailments such as asthma, edema, and bronchitis. Ethyl acetate, n-hexane, n-butanol, and compounds that are soluble in water were used to examine the antibacterial as well as antifungal capacities of the plant. The antibacterial activity of the soluble parts of ethyl acetate and n-hexane against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Bacillus subtilis was high, even though there was no activity against Pseudomonas aeruginosa. Likewise, the n-hexane and ethyl acetate fractions were found to have substantial efficacy against several fungal strains such as Aspergillus flavus, Aspergillus fumigates, Fusarium solani, and Aspergillus niger, but not against Candida glabrata. Among the studied fractions, the ethyl acetate soluble fraction had potent antibacterial activity against all of the tested species. This fraction was submitted to phytochemical analysis utilizing various chromatographic methods for the extraction of various pure components. As a consequence, four compounds were isolated, and their structures were elucidated using various spectroscopic methods such as IR, EIMS, HR-EIMS, 1H-NMR, 13C-NMR, NOESY, COSY, HMBC, and HMQC. Urs-12-en-3ß-ol (α-amyrine) (1), Urs-12-ene-2α-3ß-diol (chamaedrydiol) (2), 3ß-hydroxyurs-12-en-28-aldehyde (ursolic aldehyde) (3), and 12-oleanex-3ß-ol (ß-amyrine) (4) were extracted. Compounds 1, 2, 3, and 4 were examined for antibacterial and antifungal activity and found to have zones of inhibition ranging from 0 to 11 mm against tested bacteria strains and percent inhibition ranging from 0 to 25 percent against fungus strains. Compounds 1 and 4 showed strong efficacy against the investigated fungal species, with a 25% inhibition rate. In the case of antibacterial activity, compounds 4 and 1 showed potent activity with zones of inhibition of 11 mm and 10 mm, respectively. Compounds 2 and 3 were observed to have nonsignificant antimicrobial activity. However, docking studies reflected the complex formation of compound 1 with beta-hydroxyacyl-ACP dehydratase HadAB and S. aureus tyrosyl-tRNA synthetase and compound 2 with topoisomerase II DNA gyrase complex, and they were reported to have antibacterial properties. Similarly, compound 4 was discovered to be well compatible with the lanosterol 14-demethylase (fungal enzyme) and is thus regarded as having antifungal capabilities. Chimera software was used to identify the binding pockets of these complexes. These results indicated that Persea duthiei is a valuable source of medicinal compounds for medication development.

13.
Oxid Med Cell Longev ; 2022: 5994033, 2022.
Article in English | MEDLINE | ID: mdl-35571251

ABSTRACT

We presented a low-cost, eco-friendly, and efficient bacterium-mediated synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing Paraclostridium benzoelyticum strain 5610 as a capping and reducing agent. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray, and UV-vis spectroscopy were used to physiochemically characterize the biosynthesized ZnO-NPs. A major narrow peak at 441 nm was observed using UV-visible spectroscopy, verifying the presence of nanoparticles. According to SEM and TEM studies, the average dimensions of ZnO-NPs was 50 nm. The crystal size of 48.22 nm was determined by XRD analysis. FTIR analysis confirmed the presence of various reducing metabolites on the surface of ZnO-NPs. The synthesized nanoparticles were investigated for biological activity against Helicobacter suis, Helicobacter bizzozeronii, Helicobacter felis, and Helicobacter salomonis. Helicobacter suis was the most vulnerable strain, with an inhibitory zone of 19.53 ± 0.62 mm at 5 mg/mL dosage. The anti-inflammatory and the findings of the rat paw edema experiments revealed that the bacterium-mediated ZnO-NPs had a strong inhibitory action. In the arthritis model, the solution of ZnO-NPs showed 87.62 ± 0.12% inhibitory effect of edema after 21 days when linked with that of the standard drug. In the antidiabetic assay, ZnO-NPs sharply reduced glucose level in STZ-induced diabetic mice. In this study, the particle biocompatibility by human red blood cells was also determined. Keeping in view the biological importance of ZnO-NPs, we may readily get the conclusion that Paraclostridium benzoelyticum strain 5610-mediated ZnO-NPs will be a prospective antidiabetic, antibacterial, antiarthritic, and anti-inflammatory agent in vivo experimental models and can be used as a potent antidiabetic drug.


Subject(s)
Diabetes Mellitus, Experimental , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Clostridiales , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Microbial Sensitivity Tests , Nanoparticles/chemistry , Plant Extracts/pharmacology , Prospective Studies , Rats , Spectroscopy, Fourier Transform Infrared , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/therapeutic use
14.
Curr Issues Mol Biol ; 43(2): 1114-1132, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34563048

ABSTRACT

Background and Objectives: Saussurea lappa (S. lappa) is an important species of the Asteraceae family with several purposes in traditional medicine. This study intended to explore the cytotoxic effect of S. lappa on HepG2 cancer cell proliferation. Materials and Methods: The effects of an S. lappa n-butanol extract on the induction of apoptosis were investigated by flow cytometry and mitochondrial cytochrome C-releasing apoptosis assay. Additionally, real-time PCR was employed to confirm apoptosis initiation. Further, qualitative estimation of the active constituent of S. lappa was done by gas chromatography-mass spectroscopy (GC-MS). Results: The cell viability study revealed that the n-butanol extract of S. lappa demonstrated potent cytotoxicity against HepG2 cancer cells, with an IC50 value of 56.76 µg/mL. Cell morphology with dual staining of acridine orange (AO)-ethidium bromide (EB) showed an increase in orange/red nuclei due to cell death by S. lappa n-butanol extract compared to control cells. Apoptosis, as the mode of cell death, was also confirmed by the higher release of cytochrome C from mitochondria, the increased expression of caspase-3 and bax, along with down regulation of Bcl-2. Conclusion: These findings conclude that S. lappa is a cause of hepatic cancer cell death through apoptosis and a potential natural source suggesting furthermore investigation of its active compounds that are responsible for these observed activities.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Saussurea/chemistry , Apoptosis , Carcinoma, Hepatocellular/pathology , Cytochromes c/metabolism , Gas Chromatography-Mass Spectrometry , Humans , Liver Neoplasms/pathology , Mitochondria/metabolism , Plant Roots/chemistry
15.
Molecules ; 26(15)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34361617

ABSTRACT

The increase in resistance of microbes against conventional drugs is currently a hot issue, whereas diabetes is another main cause of mortalities encountered throughout the world after cancer and heart attacks. New drug sources in the form of plants are investigated to get effective drugs for the mentioned diseases with minimum side effects. Elaeagnus umbellata Thunb. is a medicinal plant used for the management of stress related disorders like diabetes and other health complications. The active constituents of the chloroform extract derived from E. umbellata berries was isolated by silica gel column chromatography which were identified as morin, phloroglucinol, and 1-hexyl benzene through various spectroscopic techniques (electron ionization mass spectrometry, 1H-NMR, and 13C-NMR spectroscopy). The possible protective effects (antioxidant, antibacterial, and antidiabetic activity) of isolated compounds were evaluated using reported methods. Morin exhibited strong in vitro antiradical potential against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals along with prominent antibacterial activities against selected bacterial strains (Escherichia coli, Bacillus cereus, Salmonella typhi, Klebsiella pneumonia, Pseudomonas aeruginosa and Proteus mirabilis). Among the isolated compounds the more potent one (morin) was assessed for its in vivo antidiabetic potential in streptozotocin-induced diabetic rat model. The in vivo effects observed were further confirmed in ex vivo experiments where the effect of isolated compound on antioxidant enzyme like glutathione peroxidase (GPx), total content of reduced glutathione (GSH), % DPPH inhibition, and the lipid peroxidation MDA (Malondialdehyde) level in pancreatic tissues homogenates were evaluated. In vivo morin at tested doses (2, 10, 15, 30 and 50 mg/kg body weight) significantly restored the alterations in the levels of fasting blood glucose level and body weight loss along with significant decrease in levels of cholesterol, triglycerides, low density lipoprotein, HbA1c level, and significantly increased the high-density lipoprotein in diabetic rats. Morin also effectively ameliorated the hepatic enzymes, and renal functions like serum creatinine. Morin significantly increased the antioxidant enzyme like GPx activity, GSH content, and % DPPH inhibition activity, while reduced the lipid peroxidation MDA (malondialdehyde) level in pancreatic tissues homogenates, and modification of histopathological changes in diabetic rats. Morin exhibited high antioxidant, antibacterial, and antidiabetic potentials as compared to phloroglucinol and 1-hexyl benzene, that could, therefore, be considered as a promising therapeutic agent to treat diabetes mellitus and bacterial infections.


Subject(s)
Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Flavonoids/pharmacology , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Animals , Bacterial Infections/drug therapy , Elaeagnaceae , Rats , Rats, Sprague-Dawley
16.
Article in English | MEDLINE | ID: mdl-34239581

ABSTRACT

The development of green technology is creating great interest for researchers towards low-cost and environmentally friendly methods for the synthesis of nanoparticles. Copper oxide nanoparticles (CuO-NPs) attracted many researchers due to their electric, catalytic, optical, textile, photonic, monofluid, and pharmacological activities that depend on the shape and size of the nanoparticles. This investigation aims copper oxide nanoparticles synthesis using Aerva javanica plant leaf extract. Characterization of copper oxide nanoparticles synthesized by green route was performed by three different techniques: X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscopy (SEM). X-ray diffraction (XRD) reveals the crystalline morphology of CuO-NPs and the average crystal size obtained is 15 nm. SEM images showed the spherical nature of the particles and size is lying in the 15-23 nm range. FTIR analysis confirms the functional groups of active components present in the extract which are responsible for reducing and capping agents for the synthesis of CuO-NPs. The synthesized CuO-NPs were studied for their antimicrobial potential against different bacterial as well as fungal pathogens. The results indicated that CuO-NPs show maximum antimicrobial activities against all the selected bacterial and fungal pathogens. Antimicrobial activities of copper oxide nanoparticles were compared with standard drugs Norfloxacin and amphotericin B antibiotics. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of copper oxide nanoparticles were 128 µg/mL against all selected bacterial pathogens. MIC of fungus and minimum fungicidal concentration (MFC) of CuO-NPs were 160 µg/mL. Thus, CuO-NPs can be utilized as a broad-spectrum antimicrobial agent. The cytotoxic activity of the synthesized CuO-NPs suggested that toxicity was negligible at concentrations below 60 µg/mL.

17.
Molecules ; 26(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802826

ABSTRACT

Opuntia dillenii Ker Gawl. is one of the medicinal plants used for the prevention and treatment of diabetes mellitus (DM) in Morocco. This study aims to investigate the antihyperglycemic effect of Opuntia dillenii seed oil (ODSO), its mechanism of action, and any hypoglycemic risk and toxic effects. The antihyperglycemic effect was assessed using the OGTT test in normal and streptozotocin (STZ)-diabetic rats. The mechanisms of action were explored by studying the effect of ODSO on the intestinal absorption of d-glucose using the intestinal in situ single-pass perfusion technique. An Ussing chamber was used to explore the effects of ODSO on intestinal sodium-glucose cotransporter 1 (SGLT1). Additionally, ODSO's effect on carbohydrate degrading enzymes, pancreatic α-amylase, and intestinal α-glucosidase was evaluated in vitro and in vivo using STZ-diabetic rats. The acute toxicity test on mice was performed, along with a single-dose hypoglycemic effect test. The results showed that ODSO significantly attenuated the postprandial hyperglycemia in normal and STZ-diabetic rats. Indeed, ODSO significantly decreased the intestinal d-glucose absorption in situ. The ex vivo test (Ussing chamber) showed that the ODSO significantly blocks the SGLT1 (IC50 = 60.24 µg/mL). Moreover, ODSO indu\ced a significant inhibition of intestinal α-glucosidase (IC50 = 278 ± 0.01 µg/mL) and pancreatic α-amylase (IC50 = 0.81 ± 0.09 mg/mL) in vitro. A significant decrease of postprandial hyperglycemia was observed in sucrose/starch-loaded normal and STZ-diabetic ODSO-treated rats. On the other hand, ODSO had no risk of hypoglycemia on the basal glucose levels in normal rats. Therefore, no toxic effect was observed in ODSO-treated mice up to 7 mL/kg. The results of this study suggest that ODSO could be suitable as an antidiabetic functional food.


Subject(s)
Diabetes Mellitus, Experimental/diet therapy , Fruit/chemistry , Hyperglycemia/diet therapy , Hypoglycemic Agents/pharmacology , Opuntia/chemistry , Plant Extracts/pharmacology , Seeds/chemistry , Animals , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/metabolism , Hyperglycemia/enzymology , Hyperglycemia/metabolism , Inhibitory Concentration 50 , Kinetics , Mice , Morocco , Pancreatic alpha-Amylases/metabolism , Plant Extracts/toxicity , Plants, Medicinal/chemistry , Rats , Rats, Wistar , Sodium-Glucose Transporter 1/metabolism , alpha-Glucosidases/metabolism
18.
Molecules ; 26(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918531

ABSTRACT

Admittedly, the disastrous emergence of drug resistance in prokaryotic and eukaryotic human pathogens has created an urgent need to develop novel chemotherapeutic agents. Onosma chitralicum is a source of traditional medicine with cooling, laxative, and anthelmintic effects. The objective of the current research was to analyze the biological potential of Onosma chitralicum, and to isolate and characterize the chemical constituents of the plant. The crude extracts of the plant prepared with different solvents, such as aqueous, hexane, chloroform, ethyl acetate, and butanol, were subjected to antimicrobial activities. Results corroborate that crude (methanol), EtoAc, and n-C6H14 fractions were more active against bacterial strains. Among these fractions, the EtoAc fraction was found more potent. The EtoAc fraction was the most active against the selected microbes, which was subjected to successive column chromatography, and the resultant compounds 1 to 7 were isolated. Different techniques, such as UV, IR, and NMR, were used to characterize the structures of the isolated compounds 1-7. All the isolated pure compounds (1-7) were tested for their antimicrobial potential. Compounds 1 (4',8-dimethoxy-7-hydroxyisoflavone), 6 (5,3',3-trihydroxy-7,4'-dimethoxyflavanone), and 7 (5',7,8-trihydroxy-6,3',4'-trimethoxyflavanone) were found to be more active against Staphylococcus aureus and Salmonella Typhi. Compound 1 inhibited S. typhi and S. aureus to 10 ± 0.21 mm and 10 ± 0.45 mm, whereas compound 6 showed inhibition to 10 ± 0.77 mm and 9 ± 0.20 mm, respectively. Compound 7 inhibited S. aureus to 6 ± 0.36 mm. Compounds 6 and 7 showed significant antibacterial potential, and the structure-activity relationship also justifies their binding to the bacterial enzymes, i.e., beta-hydroxyacyl dehydratase (HadAB complex) and tyrosyl-tRNA synthetase. Both bacterial enzymes are potential drug targets. Further, the isolated compounds were found to be active against the tested fungal strains. Whereas docking identified compound 7, the best binder to the lanosterol 14α-demethylase (an essential fungal cell membrane synthesizing enzyme), reported as an antifungal fluconazole binding enzyme. Based on our isolation-linked preliminary structure-activity relationship (SAR) data, we conclude that O. chitralicum can be a good source of natural compounds for drug development against some potential enzyme targets.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Boraginaceae/chemistry , Computer Simulation , Drug Resistance, Bacterial , Flavonoids/chemistry , Flavonoids/isolation & purification , Salmonella typhi/drug effects , Staphylococcus aureus/drug effects , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Drug Evaluation, Preclinical , Drug Resistance, Bacterial/drug effects , Flavonoids/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Salmonella typhi/metabolism , Staphylococcus aureus/metabolism , Structure-Activity Relationship
19.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916198

ABSTRACT

In the study, two novel compounds along with two new compounds were isolated from Grewia optiva. The novel compounds have never been reported in any plant source, whereas the new compounds are reported for the first time from the studied plant. The four compounds were characterized as: 5,5,7,7,11,13-hexamethyl-2-(5-methylhexyl)icosahydro-1H-cyclopenta[a]chrysen-9-ol (IX), docosanoic acid (X), methanetriol mano formate (XI) and 2,2'-(1,4-phenylene)bis(3-methylbutanoic acid (XII). The anticholinesterase, antidiabetic, and antioxidant potentials of these compounds were determined using standard protocols. All the isolated compounds exhibited a moderate-to-good degree of activity against acetylcholinesterases (AChE) and butyrylcholinesterase (BChE). However, compound XII was particularly effective with IC50 of 55 µg/mL (against AChE) and 60 µg/mL (against BChE), and this inhibitory activity is supported by in silico docking studies. The same compound was also effective against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals with IC50 values of 60 and 62 µg/mL, respectively. The compound also significantly inhibited the activities of α-amylase and α-glucosidase in vitro. The IC50 values for inhibition of the two enzymes were recorded as 90 and 92 µg/mL, respectively. The in vitro potentials of compound XII to treat Alzheimer's disease (in terms of AchE and BChE inhibition), diabetes (in terms of α-amylase and α-glucosidase inhibition), and oxidative stress (in terms of free radical scavenging) suggest further in vivo investigations of the compound for assessing its efficacy, safety profile, and other parameters to proclaim the compound as a potential drug candidate.


Subject(s)
Biological Products/chemistry , Grewia/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Binding Sites , Biological Products/isolation & purification , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Structure , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Protein Binding , Structure-Activity Relationship , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry
20.
Molecules ; 26(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477662

ABSTRACT

Coriandrum sativum L. seeds are traditionally used to treat diabetes and its complications (inflammation and formation of reactive oxygen species) around the world. The present study investigates the antidiabetic, anti-inflammatory, and antioxidant effects of the polyphenol fraction of Coriandrum sativum seeds (PCS). Diabetic mice were orally administered with PCS (25 and 50 mg/kg b.w.) for 28 days. Oral glucose tolerance (OGTT) was also evaluated along with the anti-inflammatory effect, assessed by measuring paw edema development induced with carrageenan in Wistar rat and the antioxidant activity assessed using two tests (ß-carotene discoloration and DPPH). Treatment of diabetic mice with PCS for four weeks managed their high fasting blood glucose levels, improved their overall health, also revealed an excellent antihyperlipidemic activity. The OGTT result showed a potent antihyperglycemic activity, and following the anti-inflammatory and antioxidant effects, the PCS exhibited a perfect activity. LC-MS/MS result revealed the presence of 9 polyphenols. This modest work indicates that the PCS have an important antidiabetic, antihyperglycemic, antihyperlipidemic, anti-inflammatory, and antioxidant effect that can be well established treatment of diabetes and its complications.


Subject(s)
Antioxidants/pharmacology , Coriandrum/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Chromatography, Liquid , Diabetes Mellitus, Experimental/pathology , Hyperglycemia/prevention & control , Mice , Rats , Rats, Wistar , Seeds/chemistry , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL