Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
J Neuroendocrinol ; 34(12): e13217, 2022 12.
Article in English | MEDLINE | ID: mdl-36458331

ABSTRACT

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, obesity, developmental delay and intellectual disability. Studies suggest dysfunctional signaling of the neuropeptide oxytocin as one of the key mechanisms in PWS, and administration of oxytocin via intranasal or systemic routes yielded promising results in both humans and mouse models. However, a detailed assessment of the oxytocin system in mouse models of PWS such as the Magel2-deficient Magel2tm1.Stw mouse, is lacking. In the present study, we performed an automated counting of oxytocin cells in the entire paraventricular nucleus of the hypothalamus of Magel2tm1.Stw and wild-type control mice and found a significant reduction in the caudal part, which represents the parvocellular subdivision. In addition, based on the recent discovery that some astrocytes express the oxytocin receptor (OTR), we performed detailed analysis of astrocyte numbers and morphology in various brain regions, and assessed expression levels of the astrocyte marker glial fibrillary acidic protein, which was significantly decreased in the hypothalamus, but not other brain regions in Magel2tm1.Stw mice. Finally, we analyzed the number of OTR-expressing astrocytes in various brain regions and found a significant reduction in the nucleus accumbens of Magel2tm1.Stw mice, as well as a sex-specific difference in the lateral septum. This study suggests a role for caudal paraventricular nucleus oxytocin neurons as well as OTR-expressing astrocytes in a mouse model of PWS, provides novel information about sex-specific expression of astrocytic OTRs, and presents several new brain regions containing OTR-expressing astrocytes in the mouse brain.


Subject(s)
Astrocytes , Hypothalamus , Neuropeptides , Oxytocin , Prader-Willi Syndrome , Animals , Female , Male , Mice , Astrocytes/metabolism , Disease Models, Animal , Hypothalamus/metabolism , Neuropeptides/metabolism , Oxytocin/metabolism , Prader-Willi Syndrome/metabolism , Receptors, Oxytocin/metabolism
2.
Neuron ; 103(1): 133-146.e8, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31104950

ABSTRACT

Oxytocin (OT) release by axonal terminals onto the central nucleus of the amygdala exerts anxiolysis. To investigate which subpopulation of OT neurons contributes to this effect, we developed a novel method: virus-delivered genetic activity-induced tagging of cell ensembles (vGATE). With the vGATE method, we identified and permanently tagged a small subpopulation of OT cells, which, by optogenetic stimulation, strongly attenuated contextual fear-induced freezing, and pharmacogenetic silencing of tagged OT neurons impaired context-specific fear extinction, demonstrating that the tagged OT neurons are sufficient and necessary, respectively, to control contextual fear. Intriguingly, OT cell terminals of fear-experienced rats displayed enhanced glutamate release in the amygdala. Furthermore, rats exposed to another round of fear conditioning displayed 5-fold more activated magnocellular OT neurons in a novel environment than a familiar one, possibly for a generalized fear response. Thus, our results provide first evidence that hypothalamic OT neurons represent a fear memory engram.


Subject(s)
Fear/physiology , Hypothalamus/physiology , Memory/physiology , Oxytocin/physiology , Amygdala/metabolism , Amygdala/physiology , Animals , Environment , Extinction, Psychological/physiology , Fear/psychology , Female , Freezing Reaction, Cataleptic , Gene Silencing , Glutamic Acid/metabolism , Hypothalamus/cytology , Neuronal Plasticity/physiology , Neurons/physiology , Optogenetics , Oxytocin/genetics , Rats , Rats, Wistar
3.
Psychoneuroendocrinology ; 106: 77-84, 2019 08.
Article in English | MEDLINE | ID: mdl-30954921

ABSTRACT

Chemogenetics provides cell type-specific remote control of neuronal activity. Here, we describe the application of chemogenetics used to specifically activate oxytocin (OT) neurons as representatives of a unique class of neuroendocrine cells. We injected recombinant adeno-associated vectors, driving the stimulatory subunit hM3Dq of a modified human muscarinic receptor into the rat hypothalamus to achieve cell type-specific expression in OT neurons. As chemogenetic activation of OT neurons has not been reported, we provide systematic analysis of the temporal dynamics of OT neuronal responses in vivo by monitoring calcium fluctuations in OT neurons, and intracerebral as well as peripheral release of OT. We further provide evidence for the efficiency of chemogenetic manipulation at behavioral levels, demonstrating that evoked activation of OT neurons leads to social motivation and anxiolysis. Altogether, our results will be profitable for researchers working on the physiology of neuroendocrine systems, peptidergic modulation of behaviors and translational psychiatry.


Subject(s)
Neurons/metabolism , Oxytocin/metabolism , Receptors, Oxytocin/metabolism , Animals , Behavior, Animal/physiology , Calcium/metabolism , Humans , Hypothalamus/metabolism , Male , Oxytocin/pharmacology , Rats , Rats, Wistar , Receptors, Muscarinic/metabolism , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL