Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Toxicol Mech Methods ; 34(3): 245-255, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38375852

ABSTRACT

Crude oil spilled at sea is chemically altered through environmental processes such as dissolution, biodegradation, and photodegradation. Transformation of hydrocarbons to oxygenated species increases water-solubility. Metabolites and oxidation products largely remain uncharacterized by common analytical methods but may be more bioavailable to aquatic organisms. Studies have shown that unresolved (i.e. unidentified) polar compounds ('UPCs') may constitute > 90% of the water-accommodated fraction (WAF) of heavily weathered crude oils, but still there is a paucity of information characterizing their toxicological significance in relation to other oil-derived toxicants. In this study, low-energy WAFs (no droplets) were generated from two field-weathered oils (collected during the 2010 Deepwater Horizon incident) and their polar fractions were isolated through fractionation. To allow establishment of thresholds for acute toxicity (LC50) of the dissolved and polar fraction of field collected oils, we concentrated both WAFs and polar fractions to beyond field-documented concentrations, and the acute toxicity of both to the marine copepod Acartia tonsa was measured and compared to the toxicity of the native WAF (non-concentrated). The difference in toxic units (TUs) between the total of the mixture and of identified compounds of known toxicity (polycyclic aromatic hydrocarbons [PAHs] and alkyl phenols) in both WAF and polar fractions was used to estimate the contribution of the UPC to overall toxicity. This approach identified that UPC had a similar contribution to toxicity as identified compounds within the WAFs of the field-weathered oils. This signifies the relative importance of polar compounds when assessing environmental impacts of spilled and weathered oil.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum Pollution/analysis , Water Pollutants, Chemical/toxicity , Oils , Petroleum/toxicity , Petroleum/analysis , Water , Polycyclic Aromatic Hydrocarbons/toxicity
2.
Aquat Toxicol ; 267: 106825, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176169

ABSTRACT

Oil and gas industries in the Northern Atlantic Ocean have gradually moved closer to the Arctic areas, a process expected to be further facilitated by sea ice withdrawal caused by global warming. Copepods of the genus Calanus hold a key position in these cold-water food webs, providing an important energetic link between primary production and higher trophic levels. Due to their ecological importance, there is a concern about how accidental oil spills and produced water discharges may impact cold-water copepods. In this review, we summarize the current knowledge of the toxicity of petroleum on North Atlantic and Arctic Calanus copepods. We also review how recent development of high-quality transcriptomes from RNA-sequencing of copepods have identified genes regulating key biological processes, like molting, diapause and reproduction in Calanus copepods, to suggest linkages between exposure, molecular mechanisms and effects on higher levels of biological organization. We found that the available ecotoxicity threshold data for these copepods provide valuable information about their sensitivity to acute petrogenic exposures; however, there is still insufficient knowledge regarding underlying mechanisms of toxicity and the potential for long-term implications of relevance for copepod ecology and phenology. Copepod transcriptomics has expanded our understanding of how key biological processes are regulated in cold-water copepods. These advances can improve our understanding of how pollutants affect biological processes, and thus provide the basis for new knowledge frameworks spanning the effect continuum from molecular initiating events to adverse effects of regulatory relevance. Such efforts, guided by concepts such as adverse outcome pathways (AOPs), enable standardized and transparent characterization and evaluation of knowledge and identifies research gaps and priorities. This review suggests enhancing mechanistic understanding of exposure-effect relationships to better understand and link biomarker responses to adverse effects to improve risk assessments assessing ecological effects of pollutant mixtures, like crude oil, in Arctic areas.


Subject(s)
Copepoda , Petroleum , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Food Chain , Water/pharmacology , Arctic Regions , Petroleum/toxicity , Petroleum/metabolism
3.
Sci Total Environ ; 823: 153779, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35150678

ABSTRACT

Chemical herders may be used to sequester and thicken surface oil slicks to increase the time window for performing in situ burning of spilled oil on the sea surface. For herder use to be an environmentally safe oil spill response option, information regarding their potential ecotoxicity both alone and in combination with oil is needed. This study aimed at assessing if using herders can cause toxicity to cold-water marine organisms. Our objective was to test the two chemical herders Siltech OP-40 (OP-40) and ThickSlick-6535 (TS-6535) with and without oil for toxicity using sensitive life stages of cold-water marine copepod (Calanus finmarchicus) and fish (Gadus morhua). For herders alone, OP-40 was consistently more toxic than TS-6535. To test herders in combination with oil, low-energy water accommodated fractions (LE-WAFs, without vortex) with Alaskan North Slope crude oils were prepared with and without herders. Dissolution of oil components from surface oil was somewhat delayed following herder application, due to herder-induced reduction in contact area between water and oil. The LE-WAFs were also used for toxicity testing, and we observed no significant differences in toxicity thresholds between treatments to LE-WAFs generated with oil alone and oil treated with herders. The operational herder-to-oil ratio is very low (1:500), and the herders tested in the present work displayed acute toxicity at concentrations well above what would be expected following in situ application. Application of chemical herders to oil slicks is not expected to add significant effects to that of the oil for cold-water marine species exposed to herder-treated oil slicks.


Subject(s)
Copepoda , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Petroleum/toxicity , Petroleum Pollution/analysis , Water , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 806(Pt 4): 151365, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34742810

ABSTRACT

The copepod Calanus finmarchicus is an ecologically important species in the North Atlantic, Norwegian and Barents seas. Accidental or continuous petroleum pollution from oil and gas production in these seas may pose a significant threat to this low trophic level keystone species. Responses related to oxidative stress, protein damage and lipid peroxidation were investigated in C. finmarchicus exposed to a water-accommodated fraction (WAF) of a naphthenic North Atlantic crude oil. The exposure concentration corresponded to 50% of the 96 h LC50, and samples were obtained at 0, 24, 48, 72 and 96 h after exposure initiation. Gene expressions (superoxide dismutase, catalase, glutathione S-transferase, glutathione synthetase, heat shock protein 70 and 90, ubiquitin and cytochrome P-450 330A1), enzyme activities (superoxide dismutase, catalase, glutathione S-transferase) and concentrations of total glutathione and malondialdehyde were analyzed. Gene expression analyses showed no differences between controls and the exposed animals, however significantly higher glutathione S-transferase activity and malondialdehyde concentrations were found in the exposed group, suggests lipid peroxidation as main toxic effect.


Subject(s)
Copepoda , Petroleum , Water Pollutants, Chemical , Animals , Oxidative Stress , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Zooplankton
5.
Ecotoxicol Environ Saf ; 229: 113100, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34923326

ABSTRACT

During sub-sea oil spills to the marine environment, oil droplets will rise towards the sea surface at a rate determined by their density and diameter as well as the vertical turbulence in the water. Micro-droplets (< 50 µm) are expected to have prolonged residence times in the water column. If present, pelagic fish eggs may thus be exposed to dispersed oil from subsurface oil spills for days, and the contribution of these micro-droplets to toxicity is not well known. The purpose of this work was to investigate to what extent timing of exposure and the presence of oil micro droplets affects PAH uptake and survival of pelagic Atlantic cod eggs. A single batch of eggs was separated in two groups and exposed to dispersions and corresponding water-soluble fraction at 3-7 days (Early exposure) and 9-13 days (Late exposure) post fertilization. Partitioning of PAHs between crude oil microdroplets, water and eggs was estimated as well as the contribution of oil droplets to PAH body residue and acute and delayed mortality. Timing of oil exposure clearly affects both the mortality rate and the timing of mortality. Even though the body residue of PAHs were lower when embryos were exposed in the later embryonic stage, mortality rate increased relative to the early exposure indicating that critical body residue threshold is stage specific. Although our results suggest that the dissolved fraction is the dominating driver for toxicity in cod embryos exposed to oil dispersions, crude oil micro droplets contribute to increased mortality as well.


Subject(s)
Gadus morhua , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Petroleum/analysis , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity
6.
Mar Environ Res ; 157: 104928, 2020 May.
Article in English | MEDLINE | ID: mdl-32275510

ABSTRACT

Macondo source oils and artificially weathered oil residues from 150 °C+ to 300 °C+, including artificially photo oxidized oils, were prepared and used for generating low energy water accommodated fractions (LE-WAFs) in order to assess the impact of oil weathering on WAF chemistry composition and toxicity to marine organisms. Two pelagic species representing primary producers (the marine algae Skeletonema pseudocostatum) and invertebrates (the marine copepod Acartia tonsa) were tested. Obtained acute toxicity levels, expressed as EC/LC50 values, were in the same range or above the obtained maximum WAF concentrations for WAFs from most weathering degrees. Based on % WAF dilutions, reduced toxicity was determined as a function of weathering. The chemical compositions of all WAFs were compared to compositions obtained from water samples reported in the GRIIDC database using multivariate analysis, indicating that WAFs of photo oxidized and two field weathered oils resembled the field data the most.


Subject(s)
Petroleum Pollution , Petroleum/toxicity , Animals , Copepoda/drug effects , Diatoms/drug effects , Oxidation-Reduction , Polycyclic Aromatic Hydrocarbons , Toxicity Tests, Acute , Water Pollutants, Chemical
7.
Sci Total Environ ; 714: 136674, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-31982742

ABSTRACT

Several laboratory studies have demonstrated that exposure to oil components cause toxicity to copepods, however, this has never been shown in natural populations of copepods. In the present study, we sampled copepods in an area of the North Sea with high density of oil production platforms discharging produced water. Environmental modelling was used to predict produced water and copepod trajectories prior to copepod sampling in situ. To maximise output from a minimal number of field samples, a novel and combined methodology was developed to allow exploitation of the same extract for several purposes; contaminant body burden, lipidomics, and metabolomics analysis. PAH body burdens were low compared to laboratory experiments where correlations between PAH body burden and acute toxicity, reproduction and molecular endpoints had been established. Still, station-specific PAH profiles strongly indicated copepod exposure to PW. NMR metabolomics, focusing on water-soluble metabolites, suggested no correlation between metabolites and stations. Interestingly, lipidomics analyses suggested site-specific fingerprints and profiles displayed for acyl-glycerols and wax esters. Potential effects of produced water exposure on lipid metabolism in copepods cannot be ruled out and deserves more attention. Our study exemplifies the importance of incorporating novel and improved analytical methodologies in environmental monitoring.


Subject(s)
Copepoda , Animals , Lipids , North Sea , Petroleum , Polycyclic Aromatic Hydrocarbons , Water , Water Pollutants, Chemical
8.
Environ Int ; 134: 105320, 2020 01.
Article in English | MEDLINE | ID: mdl-31739133

ABSTRACT

Endocrine disrupting compounds (EDCs) emerged as a major concern for water quality in the last decade and have been studied extensively since. Besides typical natural and synthetic estrogens also petroleum product compounds such as some PAHs have been identified as potential EDCs, revealing endocrine disruption to be a relevant mode of action for crude oil toxicity. Hence, in the context of a comprehensive retro- or prospective risk assessment of oil spills the implementation of mechanism-specific toxicity such as endocrine disruption is of high importance. To evaluate the exposure risk for the aquatic biota, research focuses on water-soluble fractions underlying an oil slick that could be simulated via water-accommodated fractions (WAF). Against this background human (ERα-CALUX®) and yeast based (A-YES®) reporter gene bioassays were successfully optimized for the application in estrogenicity evaluation of the water-accommodated fraction (WAF) from a crude oil. Combining different approaches, the estrogenicity of the WAFs from a naphthenic North Sea crude oil was tested with and without the addition of a chemical dispersant addressing specific aspects of estrogenicity including the influence of biotransformation capacities and different salinity conditions. Both the WAF free from droplets (LEWAF) as well as the chemically dispersed WAF (CEWAF) gave indications of an ER-mediated estrogenicity with much stronger ERα agonists in the CEWAF treatment. Resulting estradiol equivalents of the WAFs were above the established effect-based trigger values for both bioassays. Results indicate that the dispersant rather increased the fraction of ER-activating crude oil compounds instead of interacting with the receptor itself. Only slight changes in estrogenic responses were observed when cells capable of active metabolism (T47D) were used instead of cells without endogenous metabolism (U2-OS) in the recombinant ER transactivation CALUX assay. With the yeast cells a higher estrogenic activity was observed in the experiments under elevated salinity conditions (6‰), which was in contrast to previous expectations due to typical decrease in dissolved PAH fraction with increasing salinity (salting-out effect) but might be related to increased cell sensitivity.


Subject(s)
Endocrine Disruptors/metabolism , Genes, Reporter , Petroleum Pollution , Petroleum/metabolism , Water Pollutants, Chemical/metabolism , Biological Assay , Humans , North Sea , Prospective Studies , Yeasts
9.
Biol Bull ; 237(2): 90-110, 2019 10.
Article in English | MEDLINE | ID: mdl-31714858

ABSTRACT

Calanus finmarchicus and Calanus glacialis are keystone zooplankton species in North Atlantic and Arctic marine ecosystems because they form a link in the trophic transfer of nutritious lipids from phytoplankton to predators on higher trophic levels. These calanoid copepods spend several months of the year in deep waters in a dormant state called diapause, after which they emerge in surface waters to feed and reproduce during the spring phytoplankton bloom. Disruption of diapause timing could have dramatic consequences for marine ecosystems. In the present study, Calanus C5 copepodites were collected in a Norwegian fjord during diapause and were subsequently experimentally exposed to the water-soluble fraction of a naphthenic North Sea crude oil during diapause termination. The copepods were sampled repeatedly while progressing toward adulthood and were analyzed for utilization of lipid stores and for differential expression of genes involved in lipid metabolism. Our results indicate that water-soluble fraction exposure led to a temporary pause in lipid catabolism, suggested by (i) slower utilization of lipid stores in water-soluble fraction-exposed C5 copepodites and (ii) more genes in the ß-oxidation pathway being downregulated in water-soluble fraction-exposed C5 copepodites than in the control C5 copepodites. Because lipid content and/or composition may be an important trigger for termination of diapause, our results imply that the timing of diapause termination and subsequent migration to the surface may be delayed if copepods are exposed to oil pollution during diapause or diapause termination. This delay could have detrimental effects on ecosystem dynamics.


Subject(s)
Copepoda , Diapause , Petroleum , Animals , Arctic Regions , Ecosystem , Lipid Metabolism
10.
Sci Total Environ ; 694: 133682, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31386952

ABSTRACT

Extracts of produced waters from five mature Norwegian Sea oil fields were examined as total organic extracts (TOEs) and after fractionation into operationally-defined 'polar' and 'apolar' fractions. The TOEs and fractions were examined by gas chromatography (GC), GC-mass spectrometry (GC-MS), two dimensional GC-MS (GC × GC-MS) and liquid chromatography with high-resolution spectrometry (LC-HRMS) techniques. Low molecular weight aromatics, phenols and other common petroleum-derived hydrocarbons were characterized and quantified in the TOEs and fractions. In addition, a range of more uncommon polar and apolar constituents, including those likely derived from production chemicals, such as trithiolane, imidazolines and quaternary amine compounds (so-called 'quats'), were tentatively identified, using GC × GC-MS and LC-HRMS. The acute toxicity of the TOEs and subfractions was investigated using early life stages of the marine copepod Acartia tonsa. Toxicity varied significantly for different PW TOEs and subfractions. For some PWs, the toxicity was attributed mainly to the 'polar' components, while that of other PWs was associated mainly with the 'apolar' components. Importantly, the observed toxicity could not be explained by the presence of the commonly reported compounds only. Although, due to the vast chemical complexity even of the sub-fractions of the PW extracts, specific compounds driving the observed toxicity could be not be elucidated in this study, the proposed approach may suggest a way forward for future revisions of monitoring regimes for PW discharges.


Subject(s)
Environmental Monitoring/methods , Oil and Gas Fields , Petroleum Pollution , Water Pollutants, Chemical/toxicity , Chemical Fractionation , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Petroleum , Phenols
11.
Mar Environ Res ; 150: 104753, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31284099

ABSTRACT

During accidental crude oil spills and permitted discharges of produced water into the marine environment, a large fraction of naturally occurring oil components will be contained in micron-sized oil droplets. Toxicity is assumed to be associated with the dissolved fraction of oil components, however the potential contribution of oil droplets to toxicity is currently not well known. In the present work we wanted to evaluate the contribution of oil droplets to effects on normal development of Atlantic cod (Gadus morhua) through exposing embryos for 96 h to un-filtered (dispersions containing droplets) and filtered (water soluble fractions) dispersions in a flow-through system at dispersion concentrations ranging from 0.14 to 4.34 mg oil/L. After exposure, the embryos were kept in clean seawater until hatch when survival, development and morphology were assessed. The experiment was performed at two different stages of embryonic development to cover two potentially sensitive stages (gastrulation and organogenesis). Exposure of cod embryos to crude oil dispersions caused acute and delayed toxicity, including manifestation of morphological deformations in hatched larvae. Oil droplets appear to contribute to some of the observed effects including mortality, larvae condition (standard length, body surface, and yolk sac size), spinal deformations as well as alterations in craniofacial and jaw development. The timing of exposure may be essential for the development of effects as higher acute mortality was observed when embryos were exposed from the start of gastrulation (Experiment 1) than when exposed during organogenesis (Experiment 2). Even though low mortality was observed when exposed during organogenesis, concentration-dependent mortality was observed during recovery.


Subject(s)
Embryonic Development/drug effects , Gadus morhua , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Embryo, Nonmammalian/drug effects , Fishes , Petroleum/toxicity , Water Pollutants, Chemical/toxicity
12.
Mar Environ Res ; 148: 81-86, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31108339

ABSTRACT

Regular discharges of produced water from the oil and gas industry represents the largest direct discharge of effluent into the marine environment worldwide. Organic compound classes typically reported in produced water include saturated hydrocarbons, monoaromatic and polyaromatic hydrocarbons (MAHs, PAHs) as well as oxygenated compounds, such as phenols, acids and ketones. This forms a cocktail of known and suspect toxicants, but limited knowledge is yet available on the sub-lethal toxicity of produced water to cold-water marine fish species. In the present work, we conducted a 4-day exposure of embryos of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) to produced water extracts equivalent to 1:50, 1:500 and 1:5000 times dilutions of raw effluent. No significant reduction in survival or hatching success was observed, however, for cod, hatching was initiated earlier for exposed embryos in a concentration-dependent manner. During recovery, significantly reduced embryonic heart rate was observed for both species. After hatch, larvae subjected to embryonic exposure to produced water extracts were smaller, and displayed signs of cardiotoxicity, jaw and craniofacial deformations. In order to improve risk assessment and regulation of produced water discharges, it is important to identify which produced water components contribute to these effects.


Subject(s)
Cardiotoxicity , Embryo, Nonmammalian , Gadiformes , Gadus morhua , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Ecological Parameter Monitoring , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/pathology , Gadiformes/embryology , Gadus morhua/embryology , Hydrocarbons/toxicity , Petroleum/toxicity , Petroleum Pollution , Phenols/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity
13.
Environ Sci Technol ; 52(24): 14436-14444, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30481011

ABSTRACT

The impact of oil microdroplets on the partitioning of polycyclic aromatic hydrocarbons (PAHs) between water and marine zooplankton was evaluated. The experimental approach allowed direct comparison of crude oil dispersions (containing both micro-oil droplets and water-soluble fraction; WSF) with the corresponding WSF (without oil droplets). Dispersion concentration and oil type have an impact on the PAH composition of WSFs and therefore affect dispersion bioavailability. Higher T-PAH body residues were observed in copepods treated with dispersions compared to the corresponding WSFs. PAHs with log Kow 3-4.5 displayed comparable accumulation factors between treatments; however, accumulation factors for less soluble PAHs (log Kow = 4.5-6) were higher for the WSF than for the dispersions, suggesting low bioavailability for components contained in oil droplets. The higher PAH body residue in dispersion exposures is assumed to result mainly from copepods grazing on oil droplets, which offers an alternative uptake route to passive diffusion. To a large degree this route is controlled by the filtration rates of the copepods, which may be inversely related to droplet concentration.


Subject(s)
Copepoda , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Biomass , Seawater , Water
14.
Environ Sci Technol ; 52(17): 9899-9907, 2018 09 04.
Article in English | MEDLINE | ID: mdl-29897747

ABSTRACT

The risk of accidental oil spills in the Arctic is on the rise due to increased shipping and oil exploration activities, making it essential to calibrate parameters for risk assessment of oil spills to Arctic conditions. The toxicokinetics of crude oil components were assessed by exposing one lipid-poor (CIII) and one lipid-rich (CV) stage of the Arctic copepod Calanus hyperboreus to crude oil WSF (water-soluble fraction). Water concentrations and total body residues (BR), as well as lipid volume fractions, were measured at regular intervals during exposure and recovery. Bioconcentration factors (BCFs) and elimination rates ( ke) for 26 petrogenic oil components were estimated from one-compartment models fitted to the BR data. Our parameters were compared to estimations made by the OMEGA bioaccumulation model, which uses the octanol-water partitioning coefficient ( KOW) in QSAR (quantitative structure-activity relationship) predictions. Our parameters for the lipid-poor CIIIs generally agreed with the OMEGA predictions, while neither the BCFs nor the kes for the lipid-rich CVs fitted within the realistic range of the OMEGA parameters. Both the uptake and elimination rates for the CVs were in general half an order of magnitude lower than the OMEGA predictions, showing an overestimation of these parameters by the OMEGA model.


Subject(s)
Copepoda , Petroleum , Water Pollutants, Chemical , Animals , Arctic Regions , Toxicokinetics
15.
Sci Total Environ ; 640-641: 138-143, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29859431

ABSTRACT

Crude oil accidentally spilled into the marine environment undergoes natural weathering processes that result in oil components being dissolved into the water column or present in particulate form as dispersed oil droplets. Oil components dissolved in seawater are typically considered as more bioavailable to pelagic marine organisms and the main driver of crude oil toxicity, however, recent studies indicate that oil droplets may also contribute. The adhesion of crude oil droplets onto the eggs of pelagic fish species may cause enhanced transfer of oil components via the egg surface causing toxicity during the sensitive embryonic developmental stage. In the current study, we utilized an oil droplet dispersion generator to generate defined oil droplets sizes/concentrations and exposed Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) to investigate if the potential for dispersed oil droplets to adhere onto the surface of eggs was species-dependent. The influence of a commercial chemical dispersant on the adhesion process was also studied. A key finding was that the adhesion of oil droplets was significantly higher for haddock than cod, highlighting key differences and exposure risks between the two species. Scanning electron microscopy indicates that the differences in oil droplet adhesion may be driven by the surface morphology of the eggs. Another important finding was that the adhesion capacity of oil droplets to fish eggs is significantly reduced (cod 37.3%, haddock 41.7%) in the presence of the chemical dispersant.


Subject(s)
Gadiformes/physiology , Ovum/chemistry , Petroleum/analysis , Water Pollutants, Chemical/analysis , Animals , Gadus morhua/physiology , Petroleum Pollution
16.
Environ Sci Technol ; 52(7): 4358-4366, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29514001

ABSTRACT

Microbial degradation following oil spills results in metabolites from the original oil. Metabolites are expected to display lower bioaccumulation potential and acute toxicity to marine organisms due to microbial-facilitated incorporation of chemical functional groups and a general decrease in lipophilicity. The toxicity and characterization of metabolites are poorly studied. The purpose of the present work was to evaluate the toxicity of degraded (0-21 days) water-soluble oil components. Low-energy water accommodated fraction (LE-WAF) of a weathered crude oil was prepared with nutrient amended seawater at 5 °C, kept in the dark, and sampled at 0, 10, 14, and 21 days. Samples were extracted with dichloromethane and toxicity experiments were conducted with reconstituted extracts. Toxicity experiments were conducted for 4 days on developing cod ( Gadus morhua) embryos during a critical period of their heart development. After exposure, embryos were kept in clean seawater and observed until 5 days post hatch. Survival, hatching, morphometric aberrations, and cardiac function was studied. The expected decrease in sublethal toxicity during the biodegradation period was not found, indicating that metabolites formed during biodegradation likely contributed to larvae toxicity.


Subject(s)
Petroleum , Water Pollutants, Chemical , Animals , Biodegradation, Environmental , Fishes , Water
17.
J Toxicol Environ Health A ; 80(16-18): 907-915, 2017.
Article in English | MEDLINE | ID: mdl-28891761

ABSTRACT

The aim of this study was to investigate impacts of fine particulate fraction of a commonly used barite-containing drilling mud on the pelagic filter feeding copepod Calanus finmarchicus. The results show that the tested drilling mud had a low acute toxicity on C. finmarchicus (LC50 > 320 mg/L) and that the observed toxicity was likely caused by dissolved constituents in the mud and not the particle phase containing the weighting agent barite. Further, animals were exposed to drilling mud at a concentration of 10 mg/L for 168 hr followed by a 100 hr recovery phase. A rapid uptake of drilling mud particles was observed, while the excretion was slow and incomplete even after 100 hr recovery in clean seawater. The uptake of drilling mud particles caused a significant increase in sinking velocity of copepods, indicating that uptake of drilling mud particles affected their buoyancy. Long-term exposure to low concentrations of drilling mud could therefore cause physical effects such as impacts on the animal's buoyancy which may affect the energy budget of the copepods.


Subject(s)
Copepoda/drug effects , Particulate Matter/toxicity , Water Pollutants, Chemical/toxicity , Animals , Lethal Dose 50 , Petroleum/toxicity , Seawater/chemistry , Toxicity Tests, Acute
18.
J Toxicol Environ Health A ; 80(16-18): 881-894, 2017.
Article in English | MEDLINE | ID: mdl-28841382

ABSTRACT

Copepods of the genus Calanus have the potential for accumulating lipophilic oil components due to their high lipid content and found to filter and ingest oil droplets during exposure. As female copepods produce eggs at the expense of lipid storage, there is a concern for transfer of lipophilic contaminants to offspring. To assess the potential for maternal transfer of oil components, ovigerous female copepods (Calanus finmarchicus) were exposed to filtered and unfiltered oil dispersions for 4 days, collected and eggs maintained in clean seawater and hatching and gene expression examined in hatched nauplii. Oil droplet exposure contributed to polycyclic aromatic hydrocarbon (PAH) uptake in dispersion-treated adult copepods, as displayed through PAH body residue analyses and fluorescence microscopy. Applying the latter methodology, transfer of heavy PAH from copepod mothers to offspring were detected Subtle effects were observed in offspring as evidenced by a temporal reduction in hatching success appear to be occurring only when mothers were exposed to the unfiltered oil dispersions. Offspring reared in clean water through to late naupliar stages were collected for RNA extraction and preparation of libraries for high-throughput transcriptome sequencing. Differentially expressed genes were identified through pairwise comparisons between treatments. Among these, several expressed genes have known roles in responses to chemical stress including xenobiotic metabolism enzymes, antioxidants, chaperones, and components of the inflammatory response. While gene expression results suggest a transgenerational activation of stress responses, the increase in relatively small number of differentially expressed genes suggests a minor long-term effect on offspring following maternal exposure.


Subject(s)
Copepoda/drug effects , Environmental Exposure/adverse effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Female , Gene Expression Profiling , Gene Expression Regulation , Maternal Exposure/adverse effects , Petroleum/toxicity , RNA/genetics , RNA/isolation & purification , Reproduction/drug effects , Seawater/chemistry
19.
Aquat Toxicol ; 184: 94-102, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28119129

ABSTRACT

Acute oil spills and produced water discharges may cause exposure of filter-feeding pelagic organisms to micron-sized dispersed oil droplets. The dissolved oil components are expected to be the main driver for oil dispersion toxicity; however, very few studies have investigated the specific contribution of oil droplets to toxicity. In the present work, the contribution of oil micro-droplet toxicity in dispersions was isolated by comparing exposures to oil dispersions (water soluble fraction with droplets) to concurrent exposure to filtered dispersions (water-soluble fractions without droplets). Physical (coloration) and behavioral (feeding activity) as well as molecular (metabolite profiling) responses to oil exposures in the copepod Calanus finmarchicus were studied. At high dispersion concentrations (4.1-5.6mg oil/L), copepods displayed carapace discoloration and reduced swimming activity. Reduced feeding activity, measured as algae uptake, gut filling and fecal pellet production, was evident also for lower concentrations (0.08mg oil/L). Alterations in metabolic profiles were also observed following exposure to oil dispersions. The pattern of responses were similar between two comparable experiments with different oil types, suggesting responses to be non-oil type specific. Furthermore, oil micro-droplets appear to contribute to some of the observed effects triggering a starvation-type response, manifested as a reduction in metabolite (homarine, acetylcholine, creatine and lactate) concentrations in copepods. Our work clearly displays a relationship between crude oil micro-droplet exposure and reduced uptake of algae in copepods.


Subject(s)
Copepoda/drug effects , Petroleum/toxicity , Animals , Copepoda/metabolism , Eating/drug effects , Environmental Exposure , Metabolome/drug effects , Petroleum Pollution , Water Pollutants, Chemical/toxicity
20.
J Toxicol Environ Health A ; 79(13-15): 549-57, 2016.
Article in English | MEDLINE | ID: mdl-27484137

ABSTRACT

In this investigation, acute toxicity data were used from two previously reported studies where cold-water copepods were exposed to mechanically dispersed (MD) and chemically (CD) dispersed oil. In one of these studies, concentration-dependent mortality was observed, whereas no apparent relationship between exposure concentration and mortality was found in the other. The only marked difference between the studies is that copepods in the first experiment displayed a lower lipid sac volume (on average) than in the second one. In this study additional biometric data on lipid content were utilized and observed effects and toxicokinetics modeling applied in order to investigate whether differences in sensitivity between copepod cohorts might be explained by differences in lipid content. Results suggest that although a considerable lipid sac might retard toxicokinetics, the observed differences in lipid volume are not sufficient to explain differences in toxicity. Further, there are no apparent indications that acute toxic stress leads to lipid depletion, or that acute increased mortality rate selectively affects lipid-poor individuals. It is conceivable that other potential explanations exist, but the causal relationship between lipid content and increased mortality frequency remains elusive.


Subject(s)
Copepoda/drug effects , Copepoda/metabolism , Lipid Metabolism , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Toxicokinetics
SELECTION OF CITATIONS
SEARCH DETAIL