Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Anim Sci ; 78(7): 1768-78, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10907818

ABSTRACT

Two isonitrogenous diets (12.5% CP) containing 20 (20% NPN) or 40% (40% NPN) of the N as nonprotein N were evaluated with 0 or 10 mg laidlomycin propionate (LP)/kg in a 2 x 2 factorial arrangement. Changes in dietary NPN:N ratio were developed by partial substitution of urea N for fish meal N. In Trial 1, four Holstein steers (349 kg) with cannulas in the rumen and proximal duodenum were used to evaluate treatment effects on digestive function. Total tract OM digestion was slightly greater (1.2%, P < .10) for diets containing 20% of N as NPN, due to greater (3.4%, P < .05) postruminal OM digestion. Supplemental LP decreased passage of microbial N to the small intestine (7.4%, P < .10) and ruminal degradation of dietary CP (DIP, 8.1%, P < .10). Decreasing the NPN:N ratio decreased microbial N flow to the small intestine (7.5%, P < .10) and DIP (15%, P < .01) and increased (6%; P < .05) the flow of indispensable amino acids to the small intestine. Supplemental LP increased (P < .10) ruminal pH. There were no treatment effects (P > .10) on ruminal molar proportions of acetate or propionate. In Trial 2, 120 Holstein steers (122 kg) were used to evaluate treatment effects on growth performance. Decreasing the NPN:N ratio increased ADG (P < .01) by 36, 40, and 16%, respectively, for the initial three 56-d periods of the trial. Overall, ADG was 17% greater (P < .01) for cattle consuming diets containing 20 vs 40% NPN. Decreasing the NPN:N ratio increased (P < .01) gain efficiency by 17 and 14%, respectively, for the initial two 56-d periods. Overall, gain efficiency was 6% greater (P < .01) for diets containing 20% NPN. Dietary NPN:N ratio did not influence (P > .10) the NE value of diets. Supplemental LP did not affect DMI (P > .10) but increased ADG (6%, P < .01) and gain efficiency (5%, P < .05) and decreased (11%, P < .05) the maintenance energy requirements. Protein nutrition limited growth performance of calves receiving the 20% NPN diets during the initial 112 d of the trial. With the 40% NPN diets, protein nutrition limited growth performance throughout most of the trial (d 1 to d 224). We conclude that LP will enhance daily weight gain and gain efficiency of calf-fed Holstein steers. Conventional urea-based diets will not diminish response to LP, although they may not meet the metabolizable amino acid requirements of calf-fed Holsteins during the first three-quarters of the feeding period.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/growth & development , Dietary Proteins/pharmacology , Digestion/drug effects , Monensin/analogs & derivatives , Amino Acids/metabolism , Animals , Dietary Supplements , Intestine, Small/metabolism , Male , Meat/standards , Monensin/pharmacology , Rumen/drug effects , Rumen/metabolism
2.
J Anim Sci ; 76(7): 1753-9, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9690629

ABSTRACT

We used 216 Holstein steers (151 kg) in a 262-d trial to evaluate the influence of dietary magnesium level (.19, .25, and .32%) and laidlomycin propionate (LP; 0 vs 11 ppm, air-dry basis) on growth performance and NE value of the diet. During the initial 112 d of the trial, LP increased (P < .01) ADG (6.3%) and feed efficiency (4.2%). From d 112 until slaughter, LP increased (P < .05) ADG (9.7%) and feed efficiency (4.5%). Across the 262-d feeding period, LP supplementation enhanced (P < .01) ADG (8.9%) and feed efficiency (6.3%). There was an interaction (P < .05) between dietary Mg and LP on NE value of the diet. The enhancement in NE value of the diets owing to LP with .19, .25, and .32% dietary Mg were .5, 3.0, and 5.9%, respectively. Six Holstein steers (302 kg) were used in a 6 x 6 Latin square experiment to evaluate treatment effects on characteristics of ruminal and total tract digestion. There were no treatment interactions (P > .10) on site and extent of digestion of OM, starch, and N. Supplemental Mg increased (quadratic effect, P < .10) ruminal OM digestion. Neither LP nor dietary Mg level affected (P > .10) ruminal digestion of starch and feed N. Supplemental LP decreased (15%, P < .05) ruminal microbial efficiency. Total tract digestion of OM and N increased (linear effect, P < .01) with increasing dietary Mg level. There were interactions between LP and dietary Mg level on ruminal soluble-Mg concentration (linear effect, P < .01) and Mg absorption (quadratic effect, P < .05). Apparent total tract Mg digestion increased owing to LP (P < .01) and dietary Mg level (linear effect, P < .01). There were no treatment effects (P > .10) on ruminal pH. Dietary Mg level did not influence (P > .10) ruminal VFA concentrations or molar proportions. Supplemental LP increased (14%; P < .10) total ruminal VFA concentration but did not affect (P > .10) VFA molar proportions. We conclude that LP will increase daily weight gain and feed efficiency of calf-fed Holstein steers and that this response may be enhanced by increasing dietary Mg level.


Subject(s)
Cattle/growth & development , Diet/veterinary , Magnesium/administration & dosage , Monensin/analogs & derivatives , Adipose Tissue/drug effects , Adipose Tissue/growth & development , Animal Feed , Animals , Cattle/metabolism , Cattle Diseases/prevention & control , Dietary Supplements , Digestion/drug effects , Eating/drug effects , Liver Abscess/prevention & control , Liver Abscess/veterinary , Male , Meat/standards , Monensin/pharmacology , Rumen/drug effects , Rumen/physiology , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL