Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Molecules ; 24(12)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200456

ABSTRACT

Phytochemical extracts are highly complex chemical mixtures. In the context of an increasing demand for phytopharmaceuticals, assessment of the phytochemical equivalence of extraction procedures is of utmost importance. Compared to routine analytical methods, comprehensive metabolite profiling has pushed forward the concept of phytochemical equivalence. In this study, an untargeted metabolomic approach was used to cross-compare four marketed extracts from Serenoa repens obtained with three different extraction processes: ethanolic, hexanic and sCO2 (supercritical carbon dioxide). Our approach involved a biphasic extraction of native compounds followed by liquid chromatography coupled to a high-resolution mass spectrometry based metabolomic workflow. Our results showed significant differences in the contents of major and minor compounds according to the extraction solvent used. The analyses showed that ethanolic extracts were supplemented in phosphoglycerides and polyphenols, hexanic extracts had higher amounts of free fatty acids and minor compounds, and sCO2 samples contained more glycerides. The discriminant model in this study could predict the extraction solvent used in commercial samples and highlighted the specific biomarkers of each process. This metabolomic survey allowed the authors to assess the phytochemical content of extracts and finished products of S. repens and unequivocally established that sCO2, hexanic and ethanolic extracts are not chemically equivalent and are therefore unlikely to be pharmacologically equivalent.


Subject(s)
Biological Products/chemistry , Metabolomics/methods , Serenoa/chemistry , Fatty Acids/chemistry , Glycerophospholipids/chemistry , Mass Spectrometry , Phytochemicals/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry
2.
Fitoterapia ; 127: 226-236, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29477305

ABSTRACT

Liver cancer is a major health burden in Southeast Asia, and most patients turn towards the use of medicinal plants to alleviate their symptoms. The aim of this work was to apply to Southeast Asian plants traditionally used to treat liver disorders, a successive ranking strategy based on a comprehensive review of the literature and metabolomic data in order to relate ethnopharmacological relevance to chemical entities of interest. We analyzed 45 publications resulting in a list of 378 plant species, and our point system based on the frequency of citation in the literature allowed the selection of 10 top ranked species for further collection and extraction. Extracts of these plants were tested for their in vitro anti-proliferative activities on HepG2 cells. Ethanolic extracts of Andrographis paniculata, Oroxylum indicum, Orthosiphon aristatus and Willughbeia edulis showed the highest anti-proliferative effects (IC50 = 195.9, 64.1, 71.3 and 66.7 µg/ml, respectively). A metabolomic ranking model was performed to annotate compounds responsible for the anti-proliferative properties of A. paniculata (andrographolactone and dehydroandrographolide), O. indicum (baicalein, chrysin, oroxylin A and scutellarein), O. aristatus (5-desmethylsinensetin) and W. edulis (parabaroside C and procyanidin). Overall, our dereplicative approach combined with a bibliographic scoring system allowed us to rapidly decipher the molecular basis of traditionally used medicinal plants.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Ethnopharmacology , Liver Neoplasms/drug therapy , Metabolomics , Plants, Medicinal/chemistry , Andrographis/chemistry , Apigenin , Apocynaceae/chemistry , Asia, Southeastern , Biflavonoids , Bignoniaceae/chemistry , Catechin/analogs & derivatives , Diterpenes , Flavanones , Flavonoids , Hep G2 Cells , Humans , Lamiaceae/chemistry , Proanthocyanidins
SELECTION OF CITATIONS
SEARCH DETAIL