Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Carbohydr Polym ; 216: 238-246, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31047063

ABSTRACT

Functionally distinct polymers organized on the basis of rhamnogalacturonan I (RG-I) backbone with more than a half of rhamnose residues substituted by the side chains containing mostly galactose were purified from flaxseed mucilage, the primary cell wall of young hypocotyls and tertiary cell walls of bast fibers and characterized by atomic force microscopy. Seed mucilage RG-I with short side chains and unusual O3 substitution showed loose coils or star-like conformations. Primary cell wall RG-I, which included polygalacturonan (PGA) fragments, represented micellar objects and rare long chains. Pure RG-I with long galactan side chains, which was isolated as nascent polysaccharide before its incorporation into the tertiary cell wall of bast fibers was observed as long unbranched objects. RG-I entrapped by cellulose microfibrils in tertiary cell wall was visualized as compact micellar complexes. All types of flax RGs-I tended to aggregate. Relationships between RG-I structure and morphology are discussed.


Subject(s)
Flax/chemistry , Pectins/chemistry , Microscopy, Atomic Force , Molecular Weight , Pectins/isolation & purification , Pectins/ultrastructure , Seeds/chemistry
2.
Int J Biol Macromol ; 112: 900-908, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29444473

ABSTRACT

The aim of this research is to investigate the influence of the surface morphology of the calcium pectinate gel (CaPG) beads as well as the physicochemical characteristics of pectins and the CaPG beads on the adhesive properties of gels against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Bacillus subtilis. The adhesion of the bacteria depends on the type of pectin and the surface morphology of the beads. The faster adhesion on CaPG beads appeared to be related to a lower degree of methyl esterification (DE), a higher molecular weight (Mw) and specific viscosity of the pectin and a higher gel strength. Surface roughness measurements were performed using an atomic force microscope. The beads from pectins with a higher Mw, a higher specific viscosity and a lower DE had a higher surface roughness. The surface roughness was one of the factors promoting adhesion of the bacteria onto the calcium pectinate gels. The surface morphology was observed under a scanning electron microscope (SEM). SEM images illustrated that E. coli and B. subtilis adhered on the beads with a rough surface. CaPG beads obtained from callus culture pectins can be proposed for the preparation of gels with adhesive and antiadhesive properties.


Subject(s)
Adhesives/chemistry , Gels/chemistry , Pectins/chemistry , Bacillus subtilis/cytology , Bacillus subtilis/ultrastructure , Bacterial Adhesion , Escherichia coli/cytology , Escherichia coli/ultrastructure , Microspheres
3.
J Biomater Sci Polym Ed ; 28(3): 293-311, 2017 02.
Article in English | MEDLINE | ID: mdl-27929366

ABSTRACT

Pectin hydrogel particles (PHPs) were prepared by ionotropic gelation of low methylesterified pectin of Tanacetum vulgare L. with calcium ions. Wet PHPs prepared from TVF exhibited a smaller diameter and the lower weight as well as exhibited the best textural properties in terms of hardness and elasticity compared to the PHPs prepared from commercial low methylesterified pectin (CU701) used for comparison. Upon air drying, PHPs prepared from CU701 became small and dense microspheres whereas the dry PHPs prepared from TVF exhibited a drop-like shape. The morphology of dry PHPs determined by scanning electron microscopy revealed that the surface of the TVF beads exhibited fibred structures, whereas the PHPs prepared from CU701 exhibited a smooth surface. The characterization of surface roughness using atomic force microscopy indicated less roughness profile of the PHPs prepared from TVF than CU701. PHPs prepared from TVF were found to possess in vitro resistance to successive incubations in simulated gastric (SGF), intestinal (SIF), and colonic fluid (SCF) at 37 °C for 2, 4 and 18 h, respectively. The PHPs prepared from CU701 swelled in SGF and then lost their spherical shape and were fully disintegrated after 4 h of incubation in SIF. The PHPs from TVF, which were subjected to treatment with SGF, SIF and SCF, were found to adsorb microbial ß-glucuronidase (ßG) in vitro. The data obtained offered the prospect for the development of the PHPs from TVF as sorbents of colonic ßG for the inhibition of re-absorption of estrogens.


Subject(s)
Gastrointestinal Tract/metabolism , Glucuronidase/chemistry , Hydrogels/chemistry , Pectins/chemistry , Adsorption , Animals , Biomimetic Materials/metabolism , Mice , NIH 3T3 Cells , Pectins/metabolism , Tanacetum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL